How to resolve error using erfinv: Input must be real and full?
2 views (last 30 days)
Show older comments
The error that I received from the following code is as follows:
Error using erfinv
Input must be real and full.
Error in InletJetMixing (line 173)
tnew(i,1) = (1/(4*alfa))*(Wth(i,1)/(2*erfinv(1 + 0.001*(Tc/(Tc-TaveS(i+1,1))))))^2;
That would be appreciated if you could help in resolving it.
% Model Inputs
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
Th = 50; % Hot Temperature (C)
Tc = 20; % Cold Temperature (C)
Tave = (Th+Tc)/2; % Average Temperature (C)
mf = 0.001; % Mass Flow Rate (kg/s)
H = 1; % Tank Height (m)
Dtank = 0.3; % Tank Diameter (m)
Dpipe = 0.01; % Inlet Pipe Diameter (m)
visc = 0.00070057; % Average Fluid Viscosity (m2/s)
rhoH = 987.68; % Hot Water Density (kg/m3)
rhoC = 997.78; % Cold Water Density (kg/m3)
rho = 0.5*(rhoH + rhoC); % Average Fluid Density (kg/m3)
k = 0.62614; % Thermal Conductivity (W/mK)
cp = 4068.5; % Specific Heat Capacity (J/kgK)
beta = 0.00032452; % Thermal Expansion Coeff. (1/K)
alfa = k/(rho*cp); % Diffusivity (m2/s)
N = 100; % Number of Nodes
delt = 1; % Time Step Size (s)
tTotal = 7200; % Total Simulation Time (s)
g = 9.81; % Gravitational Acceleration (m/s2)
% Calculate Model Variables
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
Q = mf/rho; % Volumetric Flow Rate (m3/s)
Ac = (pi/4)*(Dtank^2); % Tank Cross-section area (m2)
u = mf/(rho*(pi/4)*(Dtank^2)); % Mean Flow Velocity (m/s)
uIN = mf/(rhoH*(pi/4)*(Dpipe^2)); % Inlet Pipe Velocity (m/s)
x(1:N,1) = (H/(2*N)):(H/N):(H-H/(2*N)); % Node Locations
tEND = (tTotal/delt)+1; % Last Time Step Value
t(1:tEND,1) = 0:delt:tTotal; % Simulation time at each time step (s)
% Initial Jet Penetration Depth and Plume Velocity (from Nizami [12])
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
% NIZAMI CONSTANTS %
dpipe = Dpipe*1000; % Inlet Pipe Diameter (mm)
ahj = -0.0150*(dpipe^2) + 1.40*(dpipe) + 0.510; % Penetration Depth Parameter a
bhj = 0.00535*(dpipe) + 0.448; % Penetration Depth Parameter b
% MODELING CONSTANTS %
Rio = (g*beta*Dpipe*(Th-Tc))/(uIN^2); % Initial Richardson Number
hIo = (ahj/1000)*(Rio^(-bhj)); % Initial Penetration Depth
% INLET PLUME VELOCITY (NIZAMI METHOD) %
mfp = mf*1.062*(Rio^(-0.278)); % Inlet Plume Mass Flow Rate (kg/s)
up = mfp/(rho*(pi/4)*(Dtank^2)); % Inlet Plume Velocity (m/s)
% Time Interval 1 (0<t<to)
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
% Determine TI and hj for 0<t<to:
% ----------------------------------------------------------------------
A2 = (pi/4)*((Dtank^2) - ((3*Dpipe)^2)); % Cross-sectional Area of Region 2 (m2)
V1 = (pi/4)*((3*Dpipe)^2)*hIo; % Volume of Region 1 (m3)
Ci = 0.00001; % Initial Thermocline Location (m)
Tau1 = -rho*V1/mfp; % Time Constant for Region 1
CT2 = Tc*rho*A2*Ci + mf*(Th-Tc)*Tau1; % Constant Term for Region 2
for i = 1:tEND
T2Top(i,1) = mfp*Tc*t(i,1) + mf*(Th-Tc)*(t(i,1)-Tau1*exp(t(i,1)/Tau1))+CT2;
T2Bot(i,1) = mfp*t(i,1) + rho*A2*Ci;
T2(i,1) = T2Top(i,1)/T2Bot(i,1); % Temperature of Region 2
Co(i,1) = (mfp/(A2*rho))*t(i,1) + Ci; % Location of Thermocline
if i == 1
TIo(i,1) = Tave;
else
TIo(i,1) = TIo(i-1,100);
end
% Iterate to solve for the jet penetration depth, h, and inlet
% mixing region temperature, TIo:
for j = 1:100
h(i,j)=(ahj/1000)*((g*beta*(Th-TIo(i,j))*Dpipe)/(uIN^2))^(-bhj);
TIo(i,j+1) = (Co(i,1)*T2(i,1) + (h(i,j) - Co(i,1))*Tc)/(h(i,j));
end
Ri(i,1) = (g*beta*(Th-TIo(i,100))*Dpipe)/(uIN^2);
hj(i,1) = h(i,100);
end
% Calculate end of time interval 1, to
% ----------------------------------------------------------------------
for i = 2:tEND
if hj(i,1) <= Co(i,1) % Determine when thermocline passes jet penetration depth
n = i-1;
break
end
end
% Determine time at end of time interval 1, to:
to = t(n,1) + ((hj(n,1) - Co(n,1))*(t(n+1,1) - t(n,1)))/((Co(n+1,1) - Co(n,1)) - (hj(n+1,1) - hj(n,1)));
TIto = TIo(n,100); % Temperature at the end of time interval 1 (degC)
hto = hj(n,1); % Jet Penetration Depth at end of time interval 1 (m)
% Time Interval 2 (t>to)
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
% Determine inlet mixing region temperature, TI, for t>to
% ----------------------------------------------------------------------
CTIn = TIto*hto - (mf*Th*to)/(rho*Ac);
for i = 1:tEND
TIn(i,1) = ((mf*Th*t(i,1))/(rho*Ac) + CTIn)/(u*(t(i,1) - to) + hto);
end
% Determine Overall TI
% ----------------------------------------------------------------------
for i = 1:tEND
if i <= n
TI(i,1) = T2(i,1);
else
TI(i,1) = TIn(i,1);
end
end
% Thermocline Location for t>to
% ----------------------------------------------------------------------
for i = 1:tEND
if t(i,1) <= to
C(i,1) = up*t(i,1) + Ci;
else
C(i,1) = C(i-1,1) + u*delt;
end
end
% Final Temperature Profile Calculation - Thermocline Thickness Method
% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
TaveS = 0.5*(TI + Tc);
time(2,1) = delt;
Tth(1,1:N) = Tc;
for i = 2:tEND-1
for j = 1:N
if x(j,1) > C(i,1) % Below Thermocline
Tth(i,j) = TaveS(i,1) + (Tc-TaveS(i,1))*erf((x(j,1)-C(i,1))/sqrt(4*alfa*time(i,1)));
elseif x(j,1) < C(i,1) % Above Thermocline
Tth(i,j) = (Tc + TI(i,1)) - (TaveS(i,1) +(Tc-TaveS(i,1))*erf((C(i,1)-x(j,1))/sqrt(4*alfa*time(i,1))));
end
end
% Determine Thermocline Thickness at the end of the time step
% ------------------------------------------------------------------
Wth(i,1) = 2*sqrt(4*alfa*time(i,1))*erfinv(1 + 0.001*(Tc/(Tc - TaveS(i,1))));
% Determine Time for profile with temperatures of next time step to
% obtain the same thermocline thickness
% ------------------------------------------------------------------
tnew(i,1) = (1/(4*alfa))*(Wth(i,1)/(2*erfinv(1 + 0.001*(Tc/(Tc-TaveS(i+1,1))))))^2;
% Calculate next 'fictitious' simulation time value
% ------------------------------------------------------------------
time(i+1,1) = tnew(i,1) + delt;
end
plot(x(1:N),Tth(3600,1:N))
title('temperature profile along the tank: Inlet Jet Mixing')
xlabel('Tank Depth(m)')
ylabel('Temperature(°C)')
0 Comments
Answers (1)
Darren Wethington
on 24 Jul 2020
I'd put a brakpoint at line 173 or run it with the option "Pause on Errors" selected. What are the values of Tc and TaveS(i+1,1) when the error occurs? Are they real? Are they equal? (if they're equal, this would cause the value 1/(Tc-TaveS(i+1,1)) = Nan)
0 Comments
See Also
Categories
Find more on Gas Dynamics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!