Validation of the prediction model with observed (new ) dataset
1 view (last 30 days)
Show older comments
I have written a code in LSTM for prediction. The code is attached below. The predicted the values are matching with YTest dataset with an R squared value of 0.923. so doubt is that how can I validate this model with a new observed values. thanks in advance.
%%define LSTM architecture
inputSize = 8;
numResponses = 1;
numHiddenUnits = 100;
layers = [sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];
opts = trainingOptions('adam', ...
'MaxEpochs',500, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',0, ...
'Plots','training-progress');
net= trainNetwork(XTrain,YTrain,layers,opts);
%%predict
Ypred1= predict(net,XTest);
0 Comments
Answers (1)
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!