genetic algorithm for curve fitting

1 view (last 30 days)
Hello Everyone
I want to Fit a curve (called MFit) on another curve (called M)
MFit is a function and defined by the following relation:
MFit = M0 + c0 * (h * z - log(z - z0 / z0))
and M is a 100-element vector. I want to fit MFit on M by choosing the right value of c0. z is a 100-element vector and M0,h and z0 are constants. What I have in mind is to define a target function as
Fun1 = abs(M - MFit)
so that by minimzing it, MFit will be fit. This is my proposed method:
MFit = @(c0) (M0 + c0 * (z - h * log((z + z0) / z0)));
Fun1 = @(c0) abs(M - MFit);
rng default
C0 = ga(Fun1,1);
but things go wrong when I run the code. Can anybody help me how I may solve this problem with genetic algorithm?

Accepted Answer

Star Strider
Star Strider on 28 Jun 2020
I would do something like this (with ‘M’ and the constants already existing in your workspace):
MFit = @(c0,M0,h,z,z0) (M0 + c0 * (z - h * log((z + z0) / z0)));
Fun1 = @(c0) norm(M - MFit(c0,M0,h,z,z0));
c0_est = ga(Fun1, 1);
The fitness funciton must return a scalar value. (The ga call can be further optimised by using an optons structure.)
.
  4 Comments
Proman
Proman on 28 Jun 2020
Many thanks for your productive direction Sir

Sign in to comment.

More Answers (0)

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!