Symbols and bar thickness in BAR graphs
2 views (last 30 days)
Show older comments
Hi,
I am using the below code to generate bar graphs. I am not able to get the symbols as typed in the latex commands with subscripts. The symbols appear as they are typed in the Matlab code and I do not see the subscripts. Can someone please suggest how to make the symbols with subscripts appear on the y axis. Can someone suggest how to reduce the bar thickness.
%%%%%%%%%%%%%%%%%
tic % All values are for DDT and p=0.04, t=90 days clear all clear memory Nh=33898857; Nc=21571585; H=7933615; % beta=4.6; % fixed number cattle per cattle shed p=0.093; % p = percent increase in natural sand fly death rate t=90;% model is run with time after spray as 90 days % Type of Analysis % analysis=1; % For Uncertainity analysis analysis=2; % For Sensitivity analysis
if analysis==1 dim=1e5; % dim=3; end
if analysis==2 dim=1e5; % dim=1e4; % dim=5; end
model='Sand flies killed'; % examine the effect of Sand flies killed with different ...
% response from my model is the optimal values of x and y
x_rlz=zeros(dim,1); % a zero matrix called "R0 realizations" of dim rows and reali columns
y_rlz=zeros(dim,1);
% 6 input parameters for getting the above response
beta_all=zeros(dim,1);
ah_all=zeros(dim,1);
muv_all=zeros(dim,1);
Ct0_all=zeros(dim,1); % DDT
% Ct0_all=zeros(dim,reali); % Deltamethrin
b1_all=zeros(dim,1);
b2_all=zeros(dim,1);
beta=zeros(dim,1);
ah=zeros(dim,1);
muv=zeros(dim,1);
Ct0=zeros(dim,1);
b1=zeros(dim,1);
b2=zeros(dim,1);
beta_vec=zeros(1,6);
ah_vec=zeros(1,6);
muv_vec=zeros(1,6);
Ct0_vec=zeros(1,6);
b1_vec=zeros(1,6);
b2_vec=zeros(1,6);
x_vec=zeros(1,6);
y_vec=zeros(1,6);
tag=zeros(dim,1);
name1='exponential';
name2='beta';
name3='gamma'; % syntax of random function, A: shape parameter B: scale parameter
name4='uniform';
name5='normal';
name6='gev'; % generalized extreme value distribution
name7='logn'; % Log normal distribution
% I/P parameter, ah has Normal Distribution, mean is 0.1792 and variance is 0.00396 par_ah=0.1792; % var_mu=0.00396344; std_ah=0.028; ah=random(name5,par_ah,std_ah,dim,1); % VECTOR
% THIS BELOW CODE MAKES IT A TRUNCATED NORMAL distribution l=0; % to the letter small "l" number zero is assigned for k1=1:dim if ah(k1) < (0.0001) l=l+1; tag(l)=k1; % assigns the row index of negative values to vector tag end end
%%%%%%added lines to check while min(ah)<0 for k1=1:dim if ah(k1) < 0 %(0.0001) ah(k1)=random(name5,par_ah,std_ah,1,1); end end end
ah_all(:,1)=ah; % to the j th column of array muv, the column vector muv is assigneds
% Below Loop introduced by Kaushik on 9_14_2012 to check if negative values do occur in the column vector ah, even after executing the % above two loops if min(ah_all)<0 fprintf(2,['One of ah values is negative ','\n']); end
ah_vec(1,1)=mean(ah);
ah_vec(1,2)=median(ah);
ah_vec(1,3)=std(ah);
ah_vec(1,4)=var(ah);
ah_vec(1,5)=min(ah);
ah_vec(1,6)=max(ah);
ac=1-ah; % VECTOR
Q=(Nh.*ah)./(ah.*Nh+ac*Nc); % VECTOR
% I/P parameter muv also has a normal distribution just as ah above
% par_muv = 1/(0.47*30); std_muv = 1/(0.42*30); % var_mu=0.00396344;
% ShapeParameter_muv= 23.611; ScaleParameter_muv=0.00321387;
% muv=random(name5,par_muv,std_muv,dim,1); % VECTOR
% low_muv=1/(0.47000000000001*30);high_muv=1/(0.46999999999999*30); % from
% first paper of srinivasan
low_muv=0.07499999999999;high_muv=0.07511111111111;
muv=random(name4,low_muv,high_muv,dim,1);
% muv=random(name3,ShapeParameter_muv,ScaleParameter_muv,dim,1); % VECTOR
% % % % % % % % To have all non-negative values of muv we choose again values which % % % % % % % % are negative % % % % % % % l=0; % to the letter small "l" number zero is assigned % % % % % % % for k1=1:dim % % % % % % % if muv(k1) < 0 %(0.0001) % % % % % % % % k1 % % % % % % % % mu(k1) % % % % % % % l=l+1; % % % % % % % tag(l)=k1; % % % % % % % end % % % % % % % end % % % % % % % % % % % % % % while min(muv)<0 % % % % % % % for k1=1:dim % % % % % % % if muv(k1) < 0 %(0.0001) % % % % % % % % muv(k1)=random(name3,par_muv,std_muv,1,1); % % % % % % % muv(k1)=random(name5,par_muv,std_muv,1,1); % % % % % % % end % % % % % % % end % % % % % % % end
muv_all(:,1)=muv; % to the j th column of array muv, the column vector muv is assigneds
if min(muv_all)<0
fprintf(2,['One of muv values is negative ','\n']);
end
muv_vec(1,1)=mean(muv);
muv_vec(1,2)=median(muv);
muv_vec(1,3)=std(muv);
muv_vec(1,4)=var(muv);
muv_vec(1,5)=min(muv);
muv_vec(1,6)=max(muv);
% Uniform distribution
% low_Ct0= 0.4941; high_Ct0=0.5858;
% Ct0=random(name4,low_Ct0,high_Ct0,dim,1); % assuming uniform distribution
% par_Ct0=(low_Ct0+high_Ct0)/2; var_Ct0 = (high_Ct0-low_Ct0)^2/12; std_Ct0 = sqrt(var_Ct0);
Mean_Ct0=0.54; Std_Ct0=0.0265;
Ct0=random(name5,Mean_Ct0,Std_Ct0,dim,1);
Ct0_all(:,1)=Ct0;
Ct0_vec(1,1)=mean(Ct0);
Ct0_vec(1,2)=median(Ct0);
Ct0_vec(1,3)=std(Ct0);
Ct0_vec(1,4)=var(Ct0);
Ct0_vec(1,5)=min(Ct0);
Ct0_vec(1,6)=max(Ct0);
% To have all non-negative values of muv we choose again values which
% are negative
l=0; % to the letter small "l" number zero is assigned
for k1=1:dim
if Ct0(k1) < 0 %(0.0001)
% k1
% mu(k1)
l=l+1;
tag(l)=k1;
end
end
while min(Ct0)<0
for k1=1:dim
if Ct0(k1) < 0 %(0.0001)
Ct0(k1)=random(name5,Mean_Ct0,Std_Ct0,1,1);
end
end
end
% if min(Ct0_all)<low_Ct0 % fprintf(2,['Lowest sampled Ct0 value is lesser than low_Ct0 ','\n']); % end % if min(Ct0_all)>high_Ct0 % fprintf(2,['Highest sampled Ct0 value is greater than high_Ct0 ','\n']); % end
%%%%%%
% % % % Uniform distribution
% % % low_b1 = 0.0086794; high_b1= 0.04332; b1=random(name4,low_b1,high_b1,dim,1); %
% % % par_b1=0.026; %par_b1=(low_b1+high_b1)/2;
% K_b1=0.741502;% shape parameter % mu_b1=0.00664696; % ?: location parameter % sigma_b1=0.00351183; % ?: scale parameter % b1=random(name6,K_b1,mu_b1,sigma_b1,dim,1); % assuming generalized extreme value distribution % Gamma distribution % ShapeParameter_b1 = 2.30441; ScaleParameter_b1=0.00527972; % b1=random(name3,ShapeParameter_b1,ScaleParameter_b1,dim,1);
% % % % % % % Uniform Distribution % % % % % % low_b1 = 0; high_b1= 0.032; b1=random(name4,low_b1,high_b1,dim,1); % % % % % % % par_b1=0.012; %par_b1=(low_b1+high_b1)/2;
% standard uniform distribution obtained by setting both parameters of beta % distribution to 1 StandardUniform_b1=random(name2,1,1,dim,1); for i=1:dim if (0 < StandardUniform_b1(i)) && (StandardUniform_b1(i) <= 1/6) b1(i)=0.004; elseif (1/6 < StandardUniform_b1(i)) && (StandardUniform_b1(i) <= 2/6) b1(i)=0.006; elseif (2/6 < StandardUniform_b1(i)) && (StandardUniform_b1(i) <= 3/6) b1(i)=0.007; elseif (3/6 < StandardUniform_b1(i)) && (StandardUniform_b1(i)<= 4/6) b1(i)=0.009; elseif (4/6 < StandardUniform_b1(i)) && (StandardUniform_b1(i)<= 5/6) b1(i)=0.019; elseif (5/6 < StandardUniform_b1(i)) && (StandardUniform_b1(i)<= 6/6) b1(i)=0.028; end end b1_all(:,1)= b1;
b1_vec(1,1)=mean(b1);
b1_vec(1,2)=median(b1);
b1_vec(1,3)=std(b1);
b1_vec(1,4)=var(b1);
b1_vec(1,5)=min(b1);
b1_vec(1,6)=max(b1);
%%%%%%
% if min(b1_all)<low_b1 % fprintf(2,['Lowest sampled b1 value is lesser than low_b1 ','\n']); % end % if min(b1_all)>high_b1 % fprintf(2,['Highest sampled b1 value is greater than high_b1 ','\n']); % end
%%%%%%
% % % % % Uniform distribution
% % % % low_b2 = 0.026358; high_b2= 0.095641; b2=random(name4,low_b2,high_b2,dim,1);
% % % % par_b2=0.061; %par_b2=(low_b2+high_b2)/2; %var_b2 = (high_b2-low_b2)^2/12;
% % % % std_b2 =0.02; %sqrt(var_b2);
% mu_b2 = -4.64085; sigma_b2 = 0.742362;
% b2=random(name7,mu_b2,sigma_b2,dim,1); % taking lognormal distribution
% ShapeParameter_b2= 3.03234; ScaleParameter_b2= 0.026712; % taking Gamma distribution % b2=random(name3,ShapeParameter_b2,ScaleParameter_b2,dim,1);
% % % % % % % % Uniform Distrbution % % % % % % % low_b2 = 0.002; high_b2= 0.21; b2=random(name4,low_b2,high_b2,dim,1); % % % % % % % par_b2=0.081; %par_b2=(low_b2+high_b2)/2; %var_b2 =(high_b2-low_b2)^2/12;
% standard uniform distribution obtained by setting both parameters of beta % distribution to 1 StandardUniform_b2=random(name2,1,1,dim,1); for i=1:dim if (0 < StandardUniform_b2(i)) && (StandardUniform_b2(i) <= 1/6) b2(i)=0.0280; elseif (1/6 < StandardUniform_b2(i)) && (StandardUniform_b2(i) <= 2/6) b2(i)=0.0440; elseif (2/6 < StandardUniform_b2(i)) && (StandardUniform_b2(i) <= 3/6) b2(i)=0.0670; elseif (3/6 < StandardUniform_b2(i)) && (StandardUniform_b2(i)<= 4/6) b2(i)=0.0720; elseif (4/6 < StandardUniform_b2(i)) && (StandardUniform_b2(i)<= 5/6) b2(i)=0.0910; elseif (5/6 < StandardUniform_b2(i)) && (StandardUniform_b2(i)<= 6/6) b2(i)=0.1840; end end
b2_all(:,1)= b2;
b2_vec(1,1)=mean(b2);
b2_vec(1,2)=median(b2);
b2_vec(1,3)=std(b2);
b2_vec(1,4)=var(b2);
b2_vec(1,5)=min(b2);
b2_vec(1,6)=max(b2);
% if min(b2_all)<low_b2 % fprintf(2,['Lowest sampled b2 value is lesser than low_b2 ','\n']); % end % if min(b2_all)>high_b2 % fprintf(2,['Highest sampled b2 value is greater than high_b2 ','\n']); % end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % I/P parameter beta, has gamma Distribution, mean is 4.6 and s.d. is 2.6 % % % % % % par_beta=4.6; std_beta=2.6; % var_mu=0.00396344; % % % % % % % beta=0.0001+random(name1,par_beta,[dim,1]); %Anuj said add 0.0001 % % % % % % ShapeParameter_beta=8.1385; ScaleParameter_beta=0.5652; low_beta=4.59999999999999; high_beta=4.600000000000010; % % % % % % beta=0.0001+random(name3,ShapeParameter_beta,ScaleParameter_beta,[dim,1]); beta=random(name4,low_beta,high_beta,dim,1); beta_all(:,1)=beta;
% % % % % % l=0; % to the letter small "l" number zero is assigned % % % % % % for k1=1:dim % % % % % % if beta(k1)<(0.0001) % % % % % % l=l+1; % % % % % % tag(l)=k1; % % % % % % end % % % % % % end % % % % % % % % % % % % while min(beta)<0 % % % % % % for k1=1:dim % % % % % % if beta(k1) < 0 %(0.0001) % % % % % % beta(k1)=random(name3,par_beta,1); % % % % % % end % % % % % % end % % % % % % end
beta_vec(1,1)=mean(beta);
beta_vec(1,2)=median(beta);
beta_vec(1,3)=std(beta);
beta_vec(1,4)=var(beta);
beta_vec(1,5)=min(beta);
beta_vec(1,6)=max(beta);
if min(beta_all)<0 fprintf(2,['One of beta values is negative ','\n']); end
Z=Nc./beta; % VECTOR
%%%%%%%%%%%%%%%formula for x and y in terms of the 6 independent variables
L1=(Q.*Ct0).*(exp(-b1.*t)); L2=((1-Q).*Ct0).*(exp(-b2.*t)); Ih=0.533; % for DDT K1=Ih*7933615; %K1=Ih*H; Iz for DDT is 0.533 % only K1 is a scalar K2=(Ih/2).*Z; %K2=Iz*Z;
kk1=L1/K1; kk2=L2./K2; kk3=p.*muv; kk4=L1+L2; % count=zeros(1,4);
% defining 12 dynamic arrays below count1=[];count2=[]; count3=[]; count4=[];
for i=1:dim if (kk2(i) < kk1(i)) && (kk3(i) <= L1(i)) x_rlz(i)= K1*p*muv(i)/(Nh*L1(i)); y_rlz(i)=0; count1=[count1 i]; elseif ( kk2(i) < kk1(i) ) && ( L1(i) < kk3(i) ) && ( kk3(i) <= kk4(i) ) x_rlz(i)= K1/Nh; y_rlz(i)= K2(i)*(p*muv(i)-L1(i))/(Nc*L2(i)); count2=[count2 i]; elseif ( kk1(i) < kk2(i) ) && ( kk3(i) <= L2(i) ) x_rlz(i)= 0; y_rlz(i)= K2(i)*p*muv(i)/(Nc*L2(i)); count3=[count3 i]; elseif (kk1(i) < kk2(i)) && ( L2(i) < kk3(i)) && ( kk3(i) <= kk4(i) ) x_rlz(i)= K1*(p*muv(i)-L2(i))/(Nh*L1(i)); y_rlz(i)= K2(i)/Nc; count4=[count4 i]; end end clear i % ################################################################# % Sensitivity Analysis starts here........
if analysis==2
% IS below the rank transformation of the data
% below is for x when condition 1 is satisfied, so i/p & o/p parameter % values are extracted when condition 1 is satisfied by using count1 % try these commands to understand how extraction works: % >> x=randn(10,1) % >> y=[4 5] % >> x(y)
% Start:code with count1: sort & order matrices: condition 1 satisfied [sorted_beta_1, order_beta_1] = sort(beta_all(count1,1)); % sorting the beta matrix in ascending order [sorted_ah_1, order_ah_1] = sort(ah_all(count1,1)); [sorted_muv_1, order_muv_1] = sort(muv_all(count1,1)); [sorted_Ct0_1, order_Ct0_1] = sort(Ct0_all(count1,1)); [sorted_b1_1, order_b1_1] = sort(b1_all(count1,1)); [sorted_b2_1, order_b2_1] = sort(b2_all(count1,1)); [sorted_x_1, order_x_1]=sort(x_rlz(count1,1)); % y (R0) is rank transformed [sorted_y_1, order_y_1]=sort(y_rlz(count1,1));
for i=1:size(count1,2) beta_rank_1(order_beta_1(i))=i; ah_rank_1(order_ah_1(i))=i; muv_rank_1(order_muv_1(i))=i; Ct0_rank_1(order_Ct0_1(i))=i; b1_rank_1(order_b1_1(i))=i; b2_rank_1(order_b2_1(i))=i; x_rank_1(order_x_1(i))=i; y_rank_1(order_y_1(i))=i; end % End:code using count 1: to sort & order matrices: condition 1 satisfied
% ################################################################# % Below start:i/p param ah & o/p param x1:condition 1(use count1 OR underscore 1)satisfied X_x_ah_1 = [ones(size(beta_rank_1')) beta_rank_1' muv_rank_1' Ct0_rank_1' b1_rank_1' b2_rank_1'];
[b_x_ah_1, bint_x_ah_1, r_x_ah_1]= regress(x_rank_1', X_x_ah_1); % Removes NaN data [b_ah_x_1, bint_ah_x_1, r_ah_x_1]= regress(ah_rank_1', X_x_ah_1);
[prcc_x_ah_1, p_val_x_ah_1]= corrcoef(r_ah_x_1, r_x_ah_1);
prcc(1)=prcc_x_ah_1(1,2); p_val(1)=p_val_x_ah_1(1,2); % ################################################################# % Above end:i/p param ah & o/p param x1:condition 1 (use count1)satisfied
% ################################################################# % Below start:i/p param muv & o/p param x1:condition 1 (use count1)satisfied X_x_muv_1 = [ones(size(beta_rank_1')) beta_rank_1' ah_rank_1' Ct0_rank_1' b1_rank_1' b2_rank_1'];
[b_x_muv_1, bint_x_muv_1, r_x_muv_1]= regress(x_rank_1', X_x_muv_1); % Removes NaN data [b_muv_x_1, bint_muv_x_1, r_muv_x_1]= regress(muv_rank_1', X_x_muv_1);
[prcc_x_muv_1, p_val_x_muv_1]= corrcoef(r_muv_x_1, r_x_muv_1);
prcc(2)=prcc_x_muv_1(1,2); p_val(2)=p_val_x_muv_1(1,2); % ################################################################# % Above end:i/p param muv & o/p param x1:condition 1 (use count1)satisfied
% ################################################################# % Below start:i/p param Ct0 & o/p param x1: condition 1 (use count1)satisfied X_x_Ct0_1 = [ones(size(muv_rank_1')) beta_rank_1' ah_rank_1' muv_rank_1' b1_rank_1' b2_rank_1']; % X_y_Ct0_1 = [ones(size(muv_rank_1')) beta_rank_1' ah_rank_1' muv_rank_1' b1_rank_1' b2_rank_1'];
[b_x_Ct0_1, bint_x_Ct0_1, r_x_Ct0_1]= regress(x_rank_1', X_x_Ct0_1); % Removes NaN data [b_Ct0_x_1, bint_Ct0_x_1, r_Ct0_x_1]= regress(Ct0_rank_1', X_x_Ct0_1);
[prcc_x_Ct0_1, p_val_x_Ct0_1]= corrcoef(r_Ct0_x_1, r_x_Ct0_1);
prcc(3)=prcc_x_Ct0_1(1,2); p_val(3)=p_val_x_Ct0_1(1,2); % ################################################################# % Above end: i/p param Ct0 & o/p param x1:condition 1 (use count1)satisfied
% ################################################################# % Below start: i/p param b1 & o/p param x1 when condition 1 (use count1)satisfied X_x_b1_1 = [ones(size(beta_rank_1')) beta_rank_1' muv_rank_1' Ct0_rank_1' ah_rank_1' b2_rank_1'];
[b_x_b1_1, bint_x_b1_1, r_x_b1_1]= regress(x_rank_1', X_x_b1_1); % Removes NaN data [b_b1_x_1, bint_b1_x_1, r_b1_x_1]= regress(b1_rank_1', X_x_b1_1);
[prcc_x_b1_1, p_val_x_b1_1]= corrcoef(r_b1_x_1, r_x_b1_1);
prcc(4)=prcc_x_b1_1(1,2); p_val(4)=p_val_x_b1_1(1,2); % ################################################################# % Above end: i/p param b1 & o/p param x1:condition 1(use count1 OR % underscore 2)satisfied
% Start code using count2 to sort & order matrices:condition 2 satisfied [sorted_beta_2, order_beta_2] = sort(beta_all(count2,1)); % sorting the beta matrix in ascending order [sorted_ah_2, order_ah_2] = sort(ah_all(count2,1)); [sorted_muv_2, order_muv_2] = sort(muv_all(count2,1)); [sorted_Ct0_2, order_Ct0_2] = sort(Ct0_all(count2,1)); [sorted_b1_2, order_b1_2] = sort(b1_all(count2,1)); [sorted_b2_2, order_b2_2] = sort(b2_all(count2,1)); [sorted_x_2, order_x_2]=sort(x_rlz(count2,1));% y (R0) is rank transformed [sorted_y_2, order_y_2]=sort(y_rlz(count2,1));
for i=1:size(count2,2) beta_rank_2(order_beta_2(i))=i; i ah_rank_2(order_ah_2(i))=i; muv_rank_2(order_muv_2(i))=i; Ct0_rank_2(order_Ct0_2(i))=i; b1_rank_2(order_b1_2(i))=i; b2_rank_2(order_b2_2(i))=i; x_rank_2(order_x_2(i))=i; y_rank_2(order_y_2(i))=i; end % End code: that uses count 2 to sort & order matrices:condition 2 satisfied
% ################################################################# % Below start: i/p param beta & o/p param y2:condition 2 (use count2)satisfied X_y_beta_2 = [ones(size(beta_rank_2')) b2_rank_2' muv_rank_2' Ct0_rank_2' ah_rank_2' b1_rank_2'];
[b_y_beta_2, bint_y_beta_2, r_y_beta_2]= regress(y_rank_2', X_y_beta_2); % Removes NaN data [b_beta_y_2, bint_beta_y_2, r_beta_y_2]= regress(beta_rank_2', X_y_beta_2);
[prcc_y_beta_2, p_val_y_beta_2]= corrcoef(r_beta_y_2, r_y_beta_2);
prcc(5)=prcc_y_beta_2(1,2); p_val(5)=p_val_y_beta_2(1,2); % ################################################################# % Above end: i/p param beta & o/p param y2:condition 2 (use count2)satisfied
% ################################################################# % Below start: i/p param ah & o/p param y2: condition 2 (use count2 OR underscore 2)satisfied X_y_ah_2 = [ones(size(beta_rank_2')) beta_rank_2' muv_rank_2' Ct0_rank_2' b1_rank_2' b2_rank_2'];
[b_y_ah_2, bint_y_ah_2, r_y_ah_2]= regress(y_rank_2', X_y_ah_2); % Removes NaN data [b_ah_y_2, bint_ah_y_2, r_ah_y_2]= regress(ah_rank_2', X_y_ah_2);
[prcc_y_ah_2, p_val_y_ah_2]= corrcoef(r_ah_y_2, r_y_ah_2);
prcc(6)=prcc_y_ah_2(1,2); p_val(6)=p_val_y_ah_2(1,2); % ################################################################# % Above end: i/p param ah & o/p param y2:condition 2 (use count2)satisfied
% ################################################################# % Below start: i/p param muv & o/p param y2: condition 2 (use count2)satisfied X_y_muv_2 = [ones(size(beta_rank_2')) beta_rank_2' ah_rank_2' Ct0_rank_2' b1_rank_2' b2_rank_2'];
[b_y_muv_2, bint_y_muv_2, r_y_muv_2]= regress(y_rank_2', X_y_muv_2); % Removes NaN data [b_muv_y_2, bint_muv_y_2, r_muv_y_2]= regress(muv_rank_2', X_y_muv_2);
[prcc_y_muv_2, p_val_y_muv_2]= corrcoef(r_muv_y_2, r_y_muv_2);
prcc(7)=prcc_y_muv_2(1,2); p_val(7)=p_val_y_muv_2(1,2); % ################################################################# % Above end: i/p param muv & o/p param y2: condition 2 (use count2)satisfied
% ################################################################# % Below start: i/p param Ct0 & o/p param y2:condition 2 (use count2)satisfied X_y_Ct0_2 = [ones(size(muv_rank_2')) beta_rank_2' ah_rank_2' muv_rank_2' b1_rank_2' b2_rank_2'];
[b_y_Ct0_2, bint_y_Ct0_2, r_y_Ct0_2]= regress(Ct0_rank_2', X_y_Ct0_2); [b_Ct0_y_2, bint_Ct0_y_2, r_Ct0_y_2]= regress(Ct0_rank_2', X_y_Ct0_2);
[prcc_y_Ct0_2, p_val_y_Ct0_2]= corrcoef(r_Ct0_y_2, r_y_Ct0_2);
prcc(8)=prcc_y_Ct0_2(1,2); p_val(8)=p_val_y_Ct0_2(1,2); % ################################################################# % Above end: i/p param Ct0 & o/p param x1:condition 1 (use count1)satisfied
% ################################################################# % Below start: i/p param b1 & o/p param y2:condition 2 (use count2)satisfied
X_y_b1_2 = [ones(size(beta_rank_2')) beta_rank_2' muv_rank_2' Ct0_rank_2' ah_rank_2' b2_rank_2'];
[b_y_b1_2, bint_y_b1_2, r_y_b1_2]= regress(y_rank_2', X_y_b1_2); % Removes NaN data [b_b1_y_2, bint_b1_y_2, r_b1_y_2]= regress(b1_rank_2', X_y_b1_2);
[prcc_y_b1_2, p_val_y_b1_2]= corrcoef(r_b1_y_2, r_y_b1_2);
prcc(9)=prcc_y_b1_2(1,2); p_val(9)=p_val_y_b1_2(1,2);
% ################################################################# % Above end: i/p param b1 & o/p param y2:condition 2(count2 OR underscore 2)satisfied
% ################################################################# % Below start: i/p param b2 & o/p param y2:condition 2 (use count2)satisfied X_y_b2_2 = [ones(size(beta_rank_2')) beta_rank_2' muv_rank_2' Ct0_rank_2' ah_rank_2' b1_rank_2'];
[b_y_b2_2, bint_y_b2_2, r_y_b2_2]= regress(y_rank_2', X_y_b2_2); % Removes NaN data [b_b2_y_2, bint_b2_y_2, r_b2_y_2]= regress(b2_rank_2', X_y_b2_2);
[prcc_y_b2_2, p_val_y_b2_2]= corrcoef(r_b2_y_2, r_y_b2_2);
prcc(10)=prcc_y_b2_2(1,2); p_val(10)=p_val_y_b2_2(1,2);
% ################################################################# % Above end: i/p param b2 & o/p param y2:condition 2(count2 OR underscore 2)satisfied
% Start code using count3 to sort & order matrices, extracting the rows for which condition 3 was satisfied [sorted_beta_3, order_beta_3] = sort(beta_all(count3,1)); % sorting the beta matrix in ascending order [sorted_ah_3, order_ah_3] = sort(ah_all(count3,1)); [sorted_muv_3, order_muv_3] = sort(muv_all(count3,1)); [sorted_Ct0_3, order_Ct0_3] = sort(Ct0_all(count3,1)); [sorted_b1_3, order_b1_3] = sort(b1_all(count3,1)); [sorted_b2_3, order_b2_3] = sort(b2_all(count3,1)); [sorted_x_3, order_x_3]=sort(x_rlz(count3,1));% y (R0) is rank transformed [sorted_y_3, order_y_3]=sort(y_rlz(count3,1));
size(count3,2) for i=1:size(count3,2) beta_rank_3(order_beta_3(i))=i; ah_rank_3(order_ah_3(i))=i; muv_rank_3(order_muv_3(i))=i; Ct0_rank_3(order_Ct0_3(i))=i; b1_rank_3(order_b1_3(i))=i; b2_rank_3(order_b2_3(i))=i; x_rank_3(order_x_3(i))=i; y_rank_3(order_y_3(i))=i; end % End code:using count 3 to sort & order matrices:for condition 3 % #################################################################
% ################################################################# % Below start: i/p param beta & o/p param y3:condition 3(count3)satisfied X_y_beta_3 = [ones(size(beta_rank_3')) b2_rank_3' muv_rank_3' Ct0_rank_3' ah_rank_3' b1_rank_3'];
[b_y_beta_3, bint_y_beta_3, r_y_beta_3]= regress(y_rank_3', X_y_beta_3); % Removes NaN data [b_beta_y_3, bint_beta_y_3, r_beta_y_3]= regress(beta_rank_3', X_y_beta_3);
[prcc_y_beta_3, p_val_y_beta_3]= corrcoef(r_beta_y_3, r_y_beta_3);
prcc(11)=prcc_y_beta_3(1,2); p_val(11)=p_val_y_beta_3(1,2); % ################################################################# % Above end: i/p param beta & o/p param y2:condition 3 (use count3)satisfied
% ################################################################# % Below start: i/p param ah & o/p param y3:condition 3(count3 OR underscore 3)satisfied X_y_ah_3 = [ones(size(beta_rank_3')) beta_rank_3' muv_rank_3' Ct0_rank_3' b1_rank_3' b2_rank_3'];
[b_y_ah_3, bint_y_ah_3, r_y_ah_3]= regress(y_rank_3', X_y_ah_3); % Removes NaN data [b_ah_y_3, bint_ah_y_3, r_ah_y_3]= regress(ah_rank_3', X_y_ah_3);
[prcc_y_ah_3, p_val_y_ah_3]= corrcoef(r_ah_y_3, r_y_ah_3);
prcc(12)=prcc_y_ah_3(1,2); p_val(12)=p_val_y_ah_3(1,2); % ################################################################# % Above end: i/p param ah & o/p param y3:condition 3(use count3)satisfied
% ################################################################# % Below start: i/p param muv & o/p param y3:condition 3 (count3)satisfied X_y_muv_3 = [ones(size(beta_rank_3')) beta_rank_3' ah_rank_3' Ct0_rank_3' b1_rank_3' b2_rank_3'];
[b_y_muv_3, bint_y_muv_3, r_y_muv_3]= regress(y_rank_3', X_y_muv_3); % Removes NaN data [b_muv_y_3, bint_muv_y_3, r_muv_y_3]= regress(muv_rank_3', X_y_muv_3);
[prcc_y_muv_3, p_val_y_muv_3]= corrcoef(r_muv_y_3, r_y_muv_3);
prcc(13)=prcc_y_muv_3(1,2); p_val(13)=p_val_y_muv_3(1,2); % ################################################################# % Above end: i/p param muv & o/p param y3:condition 3 (count3)satisfied
% ################################################################# % Below start: i/p param Ct0 & o/p param y3:condition 3(count3)satisfied X_y_Ct0_3 = [ones(size(muv_rank_3')) beta_rank_3' ah_rank_3' muv_rank_3' b1_rank_3' b2_rank_3'];
[b_y_Ct0_3, bint_y_Ct0_3, r_y_Ct0_3]= regress(Ct0_rank_3', X_y_Ct0_3); [b_Ct0_y_3, bint_Ct0_y_3, r_Ct0_y_3]= regress(Ct0_rank_3', X_y_Ct0_3);
[prcc_y_Ct0_3, p_val_y_Ct0_3]= corrcoef(r_Ct0_y_3, r_y_Ct0_3);
prcc(14)=prcc_y_Ct0_3(1,2); p_val(14)=p_val_y_Ct0_3(1,2); % ################################################################# % Above end: i/p param Ct0 & o/p param y2:condition 3(count3)satisfied
% ################################################################# % Below start: i/p param b1 & o/p param y3:condition 3(use count3)satisfied X_y_b1_3 = [ones(size(beta_rank_3')) beta_rank_3' muv_rank_3' Ct0_rank_3' ah_rank_3' b2_rank_3'];
[b_y_b1_3, bint_y_b1_3, r_y_b1_3]= regress(y_rank_3', X_y_b1_3); % Removes NaN data [b_b1_y_3, bint_b1_y_3, r_b1_y_3]= regress(b1_rank_3', X_y_b1_3);
[prcc_y_b1_3, p_val_y_b1_3]= corrcoef(r_b1_y_3, r_y_b1_3);
prcc(15)=prcc_y_b1_3(1,2); p_val(15)=p_val_y_b1_3(1,2); % ################################################################# % Above end: i/p param b1 & o/p param y3:condition 3(count3 OR underscore 3)satisfied
% Start of code that uses count4 as this sort and order matrices are used % for condition 4, extracting the rows for which condition 4 was satisfied [sorted_beta_4, order_beta_4] = sort(beta_all(count4,1)); % sorting the beta matrix in ascending order [sorted_ah_4, order_ah_4] = sort(ah_all(count4,1)); [sorted_muv_4, order_muv_4] = sort(muv_all(count4,1)); [sorted_Ct0_4, order_Ct0_4] = sort(Ct0_all(count4,1)); [sorted_b1_4, order_b1_4] = sort(b1_all(count4,1)); [sorted_b2_4, order_b2_4] = sort(b2_all(count4,1)); [sorted_x_4, order_x_4]=sort(x_rlz(count4,1));% y (R0) is rank transformed [sorted_y_4, order_y_4]=sort(y_rlz(count4,1));
size(count4,2) for i=1:size(count4,2) beta_rank_4(order_beta_4(i))=i; ah_rank_4(order_ah_4(i))=i; muv_rank_4(order_muv_4(i))=i; Ct0_rank_4(order_Ct0_4(i))=i; b1_rank_4(order_b1_4(i))=i; b2_rank_4(order_b2_4(i))=i; x_rank_4(order_x_4(i))=i; y_rank_4(order_y_4(i))=i; end % End of code that uses count 4 as this sort & order matrices for condition 4 % #################################################################
% ################################################################# % Below start:i/p param ah & o/p param x4:condition 4(count4/underscore 4)satisfied X_x_ah_4 = [ones(size(beta_rank_4')) beta_rank_4' muv_rank_4' Ct0_rank_4' b1_rank_4' b2_rank_4'];
[b_x_ah_4, bint_x_ah_4, r_x_ah_4]= regress(x_rank_4', X_x_ah_4); % Removes NaN data [b_ah_x_4, bint_ah_x_4, r_ah_x_4]= regress(ah_rank_4', X_x_ah_4);
[prcc_x_ah_4, p_val_x_ah_4]= corrcoef(r_ah_x_4, r_x_ah_4);
prcc(16)=prcc_x_ah_4(1,2); p_val(16)=p_val_x_ah_4(1,2); % ################################################################# % Above end: i/p param ah & o/p param x4:condition 4 (use count4)satisfied
% ################################################################# % Below start: i/p param muv & o/p param x4:condition 4 (use count4)satisfied X_x_muv_4 = [ones(size(beta_rank_4')) beta_rank_4' ah_rank_4' Ct0_rank_4' b1_rank_4' b2_rank_4'];
[b_x_muv_4, bint_x_muv_4, r_x_muv_4]= regress(x_rank_4', X_x_muv_4); % Removes NaN data [b_muv_x_4, bint_muv_x_4, r_muv_x_4]= regress(muv_rank_4', X_x_muv_4);
[prcc_x_muv_4, p_val_x_muv_4]= corrcoef(r_muv_x_4, r_x_muv_4);
prcc(17)=prcc_x_muv_4(1,2); p_val(17)=p_val_x_muv_4(1,2); % ################################################################# % Above ends for: i/p parameter muv & o/p parameter x4 when condition 4 (use count4) is % satisfied
% ################################################################# % Below start: i/p param Ct0 & o/p param x4:condition 4 (use count4)satisfied X_x_Ct0_4 = [ones(size(muv_rank_4')) beta_rank_4' ah_rank_4' muv_rank_4' b1_rank_4' b2_rank_4'];
[b_x_Ct0_4, bint_x_Ct0_4, r_x_Ct0_4]= regress(x_rank_4', X_x_Ct0_4); % Removes NaN data [b_Ct0_x_4, bint_Ct0_x_4, r_Ct0_x_4]= regress(Ct0_rank_4', X_x_Ct0_4);
[prcc_x_Ct0_4, p_val_x_Ct0_4]= corrcoef(r_Ct0_x_4, r_x_Ct0_4);
prcc(18)=prcc_x_Ct0_4(1,2); p_val(18)=p_val_x_Ct0_4(1,2); % ################################################################# % Above end: i/p param Ct0 & o/p param x4:condition 4(use count4)satisfied
% ################################################################# % Below start: i/p param b1 & o/p param x4:condition 4(use count4)satisfied X_x_b1_4 = [ones(size(beta_rank_4')) beta_rank_4' muv_rank_4' Ct0_rank_4' ah_rank_4' b2_rank_4'];
[b_x_b1_4, bint_x_b1_4, r_x_b1_4]= regress(x_rank_4', X_x_b1_4); % Removes NaN data [b_b1_x_4, bint_b1_x_4, r_b1_x_4]= regress(b1_rank_4', X_x_b1_4);
[prcc_x_b1_4, p_val_x_b1_4]= corrcoef(r_b1_x_4, r_x_b1_4);
prcc(19)=prcc_x_b1_4(1,2); p_val(19)=p_val_x_b1_4(1,2); % ################################################################# % Above end: i/p param b1 & o/p param x4:condition 4(count4/underscore 4)satisfied
% ################################################################# % Below start: i/p param b2 & o/p param x4:condition 4 (use count4)satisfied X_x_b2_4 = [ones(size(beta_rank_4')) beta_rank_4' muv_rank_4' Ct0_rank_4' ah_rank_4' b1_rank_4'];
[b_x_b2_4, bint_x_b2_4, r_x_b2_4]= regress(x_rank_4', X_x_b2_4); % Removes NaN data [b_b2_x_4, bint_b2_x_4, r_b2_x_4]= regress(b1_rank_4', X_x_b2_4);
[prcc_x_b2_4, p_val_x_b2_4]= corrcoef(r_b2_x_4, r_x_b2_4);
prcc(20)=prcc_x_b2_4(1,2); p_val(20)=p_val_x_b2_4(1,2); % ################################################################# % Above end: i/p param b2 & o/p param x4:condition 4(count4/underscore 4)satisfied
end % Sensitivity Analysis ends here........ % #################################################################
% ################################################################# % Uncertainity Analysis starts here........
if analysis==1
% mean,median,std,iqr
mean_r0i_x= mean(x_rlz)';
median_r0i_x=median(x_rlz)';
mean_r0i_y= mean(y_rlz)';
median_r0i_y=median(y_rlz)';
std_r0i_x=std(x_rlz)';
iqr_r0i_x=iqr(x_rlz)';
std_r0i_y=std(y_rlz)';
iqr_r0i_y=iqr(y_rlz)';
for k=1:length(x_rlz(1,:)) % can write as k=1:reali ??? t1=x_rlz(:,k); % pg1r0i(k)=length(t1(find(t1<=2)))/length(t1); % INTRODUCED UNDERSCORE X AS I HAVE ONE LOOP BELOW FOR Y AS WELL pg1r0i_x(k)=length(t1(find(t1<=2.5)))/length(t1); % Use this when mean(gamma)=0.23 end % You can use a logical expression to define X. For example, find(X > 2) % returns linear indices corresponding to the entries of X that are greater than 2. pg1r0i_x=pg1r0i_x'; pg1minusr0_x=1-pg1r0i_x;
%%mean over all realizations
for k=1:length(y_rlz(1,:)) % can write as k=1:reali ??? t1=y_rlz(:,k); % pg1r0i(k)=length(t1(find(t1<=2)))/length(t1); % INTRODUCED UNDERSCORE Y BELOW pg1r0i_y(k)=length(t1(find(t1<=2.5)))/length(t1); % Use this when mean(gamma)=0.23 end % You can use a logical expression to define X. For example, find(X > 2) % returns linear indices corresponding to the entries of X that are greater than 2. pg1r0i_y=pg1r0i_y'; pg1minusr0_y=1-pg1r0i_y;
%%mean over all realizations
mean_alli_x=mean([mean_r0i_x median_r0i_x iqr_r0i_x std_r0i_x pg1r0i_x pg1minusr0_x]);
mean_alli_y=mean([mean_r0i_y median_r0i_y iqr_r0i_y std_r0i_y pg1r0i_y pg1minusr0_y]);
%
%standard error
%
se1_x=std([mean_r0i_x median_r0i_x iqr_r0i_x std_r0i_x pg1r0i_x pg1minusr0_x]);
ser1_x=se1_x/sqrt(length(mean_r0i_x));
se1_y=std([mean_r0i_y median_r0i_y iqr_r0i_y std_r0i_y pg1r0i_y pg1minusr0_y]);
ser1_y=se1_y/sqrt(length(mean_r0i_y));
%
%variation coefficient
%
cv1_x=se1_x./mean_alli_x;
cv1_y=se1_y./mean_alli_y;
end
% Uncertainity analysis ends here % #################################################################
%%%% File for storing data %%%%%%%%
% % % % % % % % Below needs to be changed after understanding what my UA is
% strcat - Concatenate strings horizontally, Syntax: combinedStr = strcat(s1, s2, ..., sN) diary(strcat(model,'_unif_uncrt_txt.txt'))
disp('============================================================================')
disp(strcat('model: ',model,' Analysis (Uncertainty=1 & Sensitivity=2) = ',sprintf('%2d',analysis)))
disp(strcat('sample size = ',sprintf('%3.0e',dim),' p = ',sprintf('%3.2f', p), ' Days post spray = ', sprintf('%3.2f', t) ))
disp('============================================================================')
%%%% File for storing data %%%%%%%%
% ################################################################# % Uncertainity results starts here
if analysis==1
%disp(' Realization Mean(R_d) Std(R_d) Pr(1<R_d<=2) Pr(2<R_d<=3)') disp(' Realization Mean(x) Std(x) Mean(y) Std(y) ') % Use this when mean(gamma)=0.23
for i=1:1 disp(strcat(sprintf('%6d',i),sprintf('%14.3f',mean_r0i_x(i)),sprintf(' %13.3f',std_r0i_x(i)),sprintf('%14.3f',mean_r0i_y(i)),sprintf(' %13.3f',std_r0i_y(i)) )); end disp('============================================================================')
% disp(strcat('mean',sprintf('%14.4f', mean_alli_x(1)),sprintf(' %13.4f', mean_alli_x(4)), ... % sprintf(' %13.4f', mean_alli_x(5)),sprintf(' %13.4f', mean_alli_x(6)),... % sprintf('%14.4f', mean_alli_y(1)),sprintf(' %13.4f', mean_alli_y(4)), ... % sprintf(' %13.4f', mean_alli_y(5)),sprintf(' %13.4f', mean_alli_y(6)) ));
disp('============================================================================') disp(strcat('se',sprintf(' %14.4f',ser1_x(1)),sprintf(' %14.4f',ser1_y(1)) ));
disp('============================================================================') disp(strcat('cv',sprintf(' %14.4f',cv1_x(1)),sprintf(' %14.4f',cv1_y(1)) ));
end
% Uncertainity results ends here % #################################################################
% ################################################################# % Senstivity results starts here
if analysis==2
disp('===================================================================') disp('') disp(' Parameter S(x1) p-value_x1 S(y2) p-value_y2 S(y3) p-value_y3 S(x4) p-value_x4') disp('-----------------------------------') disp(strcat( 'beta ',sprintf('\t\t%s ', '--'),sprintf(' %s ', ' --- '),sprintf(' \t\t%8.4f', prcc(5)),sprintf(' %13.3e', p_val(5)), sprintf('\t\t%8.4f', prcc(11)),sprintf('\t\t%13.3e', p_val(11)),sprintf('\t\t%s', '-----'),sprintf('\t\t%s', '----'))); disp(strcat( 'ah ',sprintf('\t\t%8.4f', prcc(1)),sprintf(' %13.3e', p_val(1)),sprintf('\t\t%8.4f', prcc(6)),sprintf(' %13.3e', p_val(6)), sprintf('\t\t%8.4f', prcc(12)),sprintf(' %13.3e', p_val(12)),sprintf('\t\t%8.4f', prcc(16)),sprintf(' %13.3e', p_val(16)))); disp(strcat( 'muv ',sprintf('\t\t%8.4f', prcc(2)),sprintf(' %13.3e', p_val(2)),sprintf('\t\t%8.4f', prcc(7)),sprintf(' %13.3e', p_val(7)), sprintf('\t\t%8.4f', prcc(13)),sprintf(' %13.3e', p_val(13)),sprintf('\t\t%8.4f', prcc(17)),sprintf(' %13.3e', p_val(17)) )); disp(strcat( 'Ct0 ',sprintf('\t\t%8.4f', prcc(3)),sprintf(' %13.3e', p_val(3)),sprintf('\t\t%8.4f', prcc(8)),sprintf(' %13.3e', p_val(8)), sprintf('\t\t%8.4f', prcc(14)),sprintf(' %13.3e', p_val(14)),sprintf('\t\t%8.4f', prcc(18)),sprintf(' %13.3e', p_val(18)) )); disp(strcat( 'b1 ',sprintf('\t\t%8.4f', prcc(4)),sprintf(' %13.3e', p_val(4)),sprintf('\t\t%8.4f', prcc(9)),sprintf(' %13.3e', p_val(9)), sprintf('\t\t%8.4f', prcc(15)),sprintf(' %13.3e', p_val(15)),sprintf('\t\t%8.4f', prcc(19)),sprintf(' %13.3e', p_val(19)) )); disp(strcat( 'b2 ',sprintf('\t\t%s ', ' -----'),sprintf(' %s ', ' ------ '),sprintf(' \t\t%8.4f', prcc(10)),sprintf(' %13.3e', p_val(10)), sprintf('\t\t%s ', '------'),sprintf(' %s ', '-------'),sprintf('\t\t%8.4f', prcc(20)),sprintf(' %13.3e', p_val(20)) ));
end
% Sensitivity results ends here % #################################################################
diary off
if analysis==2
figure('Color',[1 1 1]);
figure(1)
subplot(2,2,1);
x1=[prcc(1); prcc(3); prcc(4)];
barh(x1);
% fname={'\beta','a_h','\mu_v','C_{t0}','b_1','b_2'}; set(gca,'yticklabel',{fname});
% InputParameters = ['\beta';'a_h';'\mu_v';'C_{t0}';'b_1';'b_2']; set(gca,'YTickLabels',InputParameters)
set(gca,'yticklabel',{'a_h','C_{t0}','b_1'})
title('First feasible solution Sensitivity: prcc values for x_1, y_1 is fixed ')
subplot(2,2,2);
y2=[prcc(6); prcc(8); prcc(9); prcc(10)];
barh(y2);
set(gca,'yticklabel',{'a_h','C_{t0}','b_1','b_2'})
title('Second feasible solution Sensitivity: x_2 is fixed, prcc values for y_2 ')
subplot(2,2,3);
y2=[prcc(12); prcc(14); prcc(15)];
barh(y2);
set(gca,'yticklabel',{'a_h','C_{t0}','b_1'})
title('Third feasible solution Sensitivity: x_3 is fixed, prcc values for y_3 ')
subplot(2,2,4);
y2=[prcc(16); prcc(18); prcc(19); prcc(20)];
barh(y2);
set(gca,'yticklabel',{'a_h','C_{t0}','b_1','b_2'})
title('Fourth feasible solution Sensitivity: prcc values for x_4, y_4 is fixed')
end
if analysis==1
figure('Color',[1 1 1]); figure(1)
% subplot(3,3,1); subplot(2,2,1); hist(ah,100) title('Sampling Distribution of a_h, mean=','fontsize',22);
% subplot(3,3,2); % hist(muv,100) % title('Distribution of \mu_v','fontsize',22);
subplot(2,2,2);
hist(Ct0,100)
title('Distribution of C_{t0}','fontsize',22);
% subplot(3,3,4); subplot(2,2,3); hist(b1,100) title('Distribution of b_1','fontsize',22);
subplot(2,2,4);
hist(b2,100)
title('Distribution of b_2','fontsize',22);
% % % % % subplot(3,3,6); % % % % % % [xcounts1,~] = hist(x_rlz1,100);[xcounts2,~] = hist(x_rlz2,100);[xcounts3,~] = hist(x_rlz3,100);[xcounts4,~] = hist(x_rlz4,100); % % % % % % histmat_x_rlz = [reshape(xcounts1,100,1) reshape(xcounts2,100,1) reshape(xcounts3,100,1) reshape(xcounts4,100,1)]; % % % % % % bar(histmat_x_rlz, 1.2); % % % % % hist(x_rlz,100); % % % % % hist(x_rlz) % % % % % % bar(x_rlz, 1.2); % % % % % title('Distribution of x','fontsize',22) % % % % % % % % % % subplot(3,3,7); % % % % % % [ycounts1,~] = hist(y_rlz1,100);[ycounts2,~] = hist(y_rlz2,100);[ycounts3,~] = hist(y_rlz3,100);[ycounts4,~] = hist(y_rlz4,100); % % % % % % histmat_y_rlz = [reshape(ycounts1,100,1) reshape(ycounts2,100,1) reshape(ycounts3,100,1) reshape(ycounts4,100,1)]; % % % % % % bar(histmat_y_rlz, 1.2); % % % % % % bar(y_rlz, 1.2); % % % % % hist(y_rlz,100); % % % % % % hist(y_rlz(:,reali),100) % % % % % title('Distribution of y','fontsize',22)
% beta is taken as a constant in manuscript 1
% % % % % subplot(3,3,1);
% % % % % hist(beta,100)
% % % % % title('Distribution of \beta','fontsize',22);
figure('Color',[1 1 1]);
figure(2)
subplot(2,2,1);
hist(x_rlz(count1,1))
title('Distribution of x when first pair of conditions is satisfied','fontsize',14)
subplot(2,2,2);
hist(x_rlz(count2,1))
title('Distribution of x when second pair of conditions is satisfied','fontsize',14)
subplot(2,2,3);
hist(x_rlz(count3,1))
title('Distribution of x when third pair of conditions is satisfied','fontsize',14)
subplot(2,2,4);
hist(x_rlz(count4,1))
title('Distribution of x when fourth pair of conditions is satisfied','fontsize',14)
figure('Color',[1 1 1]);
figure(3)
subplot(2,2,1);
hist(y_rlz(count1,1))
title('Distribution of y when first pair of conditions is satisfied','fontsize',14)
subplot(2,2,2);
hist(y_rlz(count2,1))
title('Distribution of y when second pair of conditions is satisfied','fontsize',14)
subplot(2,2,3);
hist(y_rlz(count3,1))
title('Distribution of y when third pair of conditions is satisfied','fontsize',14)
subplot(2,2,4);
hist(y_rlz(count4,1))
title('Distribution of y when fourth pair of conditions is satisfied','fontsize',14)
end
fprintf(['Number of times condition 1,2,3 & 4 are satisfied are ',num2str(size(count1,2)),', ',num2str(size(count2,2)),', ',num2str(size(count3,2)),' & ',num2str(size(count4,2)),' times respectively','\n']); fprintf(['Number of times infeasible condition arises is ',num2str(dim-size(count1,2)-size(count2,2)-size(count3,2)-size(count4,2)),' times','\n']);
fprintf(['Means of x realizations when condition 1,2,3 & 4 are satisfied are ',num2str(mean(x_rlz(count1,1))),', ',num2str(mean(x_rlz(count2,1))),', ',num2str(mean(x_rlz(count3,1))),' & ',num2str(mean(x_rlz(count4,1))),' times respectively','\n']); fprintf(['Means of y realizations when condition 1,2,3 & 4 are satisfied are ',num2str(mean(y_rlz(count1,1))),', ',num2str(mean(y_rlz(count2,1))),', ',num2str(mean(y_rlz(count3,1))),' & ',num2str(mean(y_rlz(count4,1))),' times respectively','\n']);
toc %%%%%%%%%%%%%%%%%%
0 Comments
Answers (0)
See Also
Categories
Find more on Preprocessing in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!