ode45 Set of 3 second order ODE not solving correctly

1 view (last 30 days)
Attempting to solve 3 2nd order ODE's (broken down into 6 1st orders here) using ode45. My answer does not appear to come out correctly and am not sure what I am doing wrong.
CODE:
tspan=[0 60]; %Time Boundaries
x0=[0 0 0 0 0 0]; %Inital Values of disp and vel
[t,x]=ode45(@output,tspan, x0) %Implement ode45 solver
plot(t,x)
xlabel('time')
ylabel('displacement/velocity')
title('Problem 25.18')
legend('Displacement','Velocity')
function dxdt=output(t,x) %Create system of equations
m1=60;
m2=70;
m3=80;
k1=50;
k2=100;
k3=50;
g=9.81;
dxdt=zeros(6,1);
dxdt(1)=x(1);
dxdt(2)=x(2);
dxdt(3)=x(3);
dxdt(4)=g+(k2/m1)*(x(2)-x(1))-(k1/m1)*x(1);
dxdt(5)=g+(k3/m2)*(x(3)-x(2))+(k2/m2)*(x(1)-x(2));
dxdt(6)=g+(k3/m3)*(x(2)-x(3));
end

Accepted Answer

David Goodmanson
David Goodmanson on 20 Apr 2020
Hi William,
you are close on this. x1,x2,x3 are postions and x4,x5,x6 are velocities so the appropriate lines of code are
dxdt(1)=x(4);
dxdt(2)=x(5);
dxdt(3)=x(6);
in which case you get oscillations.
g is positive which makes positive x in the direction of down. That's all right as long as you acknowledge the fact in a picture or something. g = -9.81 would put positive x up which is more common.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!