How to find following integral answer in matlab

2 views (last 30 days)
Dear scholars,
I need to find soln of integral:
int((f1(x))^3 * f2(x), x, 0, L)
but matlab can not solve it,
Any ideas?
I also attach the code here
(fi(x) are all combintaions of trigonometrix and hyperbolic functions, and due to orthogonality we know that int(f1(x) * f2(x), x, 0, L)) = 0, but I need to make sure whenever the first function is cubed)
clc
clear all
close all
format long
L = 100e-3;
Areap = 2*(b*hp);
Areas = b*hs;
Areat = Areas + Areap;
roAt = ros*Areas + rop*Areap;
landaL = [1.875104, 4.694091, 7.854757];
landa = landaL./L;
syms x
a1 = (cosh(landaL(1)+cos(landaL(1))));
a2 = (sinh(landaL(1))+sin(landaL(1)));
% phi = (1/sqrt(roAt*L)) * (cosh(landa*x)-cos(landa*x)-(a1/a2)*(sinh(landa*x)-sin(landa*x)));
phi(1) = (1/sqrt(roAt*L)) * (cosh(landa(1)*x)-cos(landa(1)*x)-(a1/a2)*(sinh(landa(1)*x)-sin(landa(1)*x)));
b1 = (cosh(landaL(2)+cos(landaL(2))));
b2 = (sinh(landaL(2))+sin(landaL(2)));
% phi = (1/sqrt(roAt*L)) * (cosh(landa*x)-cos(landa*x)-(a1/a2)*(sinh(landa*x)-sin(landa*x)));
phi(2) = (1/sqrt(roAt*L)) * (cosh(landa(2)*x)-cos(landa(2)*x)-(b1/b2)*(sinh(landa(2)*x)-sin(landa(2)*x)));
% A01 = round(int(roAt*phi(1)*phi(1),x,0,L))
A11 = round(int(roAt*phi(1)*phi(2),x,0,L))
% A11 is = 0 showing and proving the orthogonality trait ...
A21 = int(roAt*(phi(1)^2)*phi(2),x,0,L)
%A21 = round(int(roAt*(phi(1)^2)*phi(2)),x,0,L)
  1 Comment
David Goodmanson
David Goodmanson on 31 Mar 2020
Hi Alireza,
you did not supply the constants needed to calculate roAt, but since that quantity is only used as a normalization constant it does not affect whether an integral is zero or not. I just used roAt = 1. Now
A11 = double(int(roAt*phi(1)*phi(2),x,0,L))
A11 =
0.3165
so it's nonzero. Numerical integration gives the same result. That is more or less expected since the trig functions do not have an integral number of oscillations in the span from 0 to L. How do you justify using round in this situation?

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!