Graphical Representation of Shape Functions for a Canonical Quadrilateral Element
9 views (last 30 days)
Show older comments
Jose vieira de neto
on 29 Mar 2020
Commented: Jose vieira de neto
on 7 May 2020
Hi! I am a beginner user, I would like to plot a Quadrilateral shape function that I am studing. I know the theoretical functions and the graphical results (show bellow) but I am failing to plot the same graphics.
Just the first plot seems to be correct.
[s,t]=meshgrid(0:0.1:1,0:0.1:1)
N1=(1/4)*(t-1)*(s-1);
subplot(2,2,1)
surf(s,t,N1)
[s,t]=meshgrid(0:0.1:1,0:0.1:1)
N2=@(s,t)(1/4)*(t+1)*(s-1);
subplot(2,2,2)
surf(s,t,N2(s,t))
[s,t]=meshgrid(0:0.1:1,0:0.1:1)
N3=@(s,t)(1/4)*(t+1)*(s+1);
subplot(2,2,3)
surf(s,t,N3(s,t))
[s,t]=meshgrid(0:0.1:1,0:0.1:1)
N4=@(s,t)(-1/4)*(t-1)*(s+1);
subplot(2,2,4)
surf(s,t,N4(s,t)

Thank you.
0 Comments
Accepted Answer
Precise Simulation
on 5 May 2020
Edited: Precise Simulation
on 5 May 2020
1. The local coordinates should go from -1..1 (not 0..1).
2. Switch order for the local coordinates 1+/-s/t (not s/t+/-1).
3. Use the elemetwise product operator ".*" between s/t (s and t are matrices and using "*" will result in matrix multiplication which is not correct).
[s,t] = meshgrid(-1:0.1:1,0:0.1:1);
N1 = 1/4*(1-t).*(1-s);
subplot(2,2,1)
surf(s,t,N1)
N2 = @(s,t)1/4*(1-t).*(1+s);
subplot(2,2,2)
surf(s,t,N2(s,t))
N3 = @(s,t)1/4*(1+t).*(1+s);
subplot(2,2,3)
surf(s,t,N3(s,t))
N4 = @(s,t)1/4*(1+t).*(1-s);
subplot(2,2,4)
surf(s,t,N4(s,t))
More Answers (0)
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!