How can I extract a trained RL Agent's network's weights and biases?
9 views (last 30 days)
Show older comments
How can I extract a trained RL Agent's network's weights and biases?
My network is:
statePath = [
imageInputLayer([numObservations 1 1], 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(NumNeuron, 'Name', 'CriticStateFC1')
reluLayer('Name', 'CriticRelu1')
fullyConnectedLayer(NumNeuron, 'Name', 'CriticStateFC2')];
actionPath = [
imageInputLayer([1 1 1], 'Normalization', 'none', 'Name', 'action')
fullyConnectedLayer(NumNeuron, 'Name', 'CriticActionFC1')
reluLayer('Name', 'ActorRelu1')
fullyConnectedLayer(NumNeuron, 'Name', 'CriticActionFC2')];
commonPath = [
additionLayer(2,'Name', 'add')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(1, 'Name', 'output')];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC2','add/in2');
% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',learing_rate,...
'GradientThreshold',1);
% create the critic based on the network approximator
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation',{'state'},'Action',{'action'},criticOpts);
agent = rlDQNAgent(critic,agentOpts)
trainingStats = train(agent,env,trainOpts);
After training, I'd like to get the network's trained weights and biases.
0 Comments
Accepted Answer
Anh Tran
on 27 Mar 2020
Edited: Anh Tran
on 27 Mar 2020
You can get the parameters from the trained's critic representation for DQN agent. In MATLAB R2020a, see getLearnableParameters and getCritic functions (function name changes a bit since R2019b). You can follow similar steps to get the actor's parameters from actor-based agent like DDPG or PPO.
critic = getCritic(agent);
criticParams = getLearnableParameters(critic);
6 Comments
Francisco Serra
on 14 Dec 2023
轩
on 5 Jan 2024
@Francisco Serra I have the same need. I find a silly method: save the agent after each episode and use "getLearnableParameters" to print the parameter of each agent.
More Answers (0)
See Also
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!