MATLAB Answers

How do I plot a line graph from scatter plot?

1 view (last 30 days)
donghun lee
donghun lee on 24 Mar 2020
Commented: donghun lee on 24 Mar 2020
clc
clear all
A = 0.05;
l_r = 2; %Wave length of the road
v = 45; %Speed(m/s)
P = l_r/v; %Period
%Om = 1/P*2*pi; %Forcing Frequency
%Om = %0.07m,2m,45m/s
k_l = 26400; %Linear stiffness
m = 483; %Mass
d = -0.1; %Stretching condition
l = 0.5; %Length of the spring
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
fig = figure();
ax = axes();
hold(ax);
% view([-53 33]);
grid on
Om_array = linspace(0,100,200); %Excitation Amplitude
T = 10;
x0 = [0,0];
for i=1:numel(Om_array)
Om = Om_array(i);
f = @(t,x) [ x(2); ...
-(4*k_s*(x(1)-A*sin(Om*t))*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2) - l))/ ...
(m*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2))) ];
[t, x] = ode45(f,[0,T],x0);
Response_amp = max(x(:,1)) - min(x(:,1));
plot(Om, Response_amp, '.');
end
Hi, all.
If I run this code, I get a scatter plot, but I wish to generate a line graph. Thank you for your time.

  0 Comments

Sign in to comment.

Accepted Answer

KSSV
KSSV on 24 Mar 2020
clc
clear all
A = 0.05;
l_r = 2; %Wave length of the road
v = 45; %Speed(m/s)
P = l_r/v; %Period
%Om = 1/P*2*pi; %Forcing Frequency
%Om = %0.07m,2m,45m/s
k_l = 26400; %Linear stiffness
m = 483; %Mass
d = -0.1; %Stretching condition
l = 0.5; %Length of the spring
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
fig = figure();
ax = axes();
hold(ax);
% view([-53 33]);
grid on
Om_array = linspace(0,100,200); %Excitation Amplitude
T = 10;
x0 = [0,0];
xval = zeros([],1) ;
yval = zeros([],1) ;
for i=1:numel(Om_array)
Om = Om_array(i);
f = @(t,x) [ x(2); ...
-(4*k_s*(x(1)-A*sin(Om*t))*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2) - l))/ ...
(m*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2))) ];
[t, x] = ode45(f,[0,T],x0);
Response_amp = max(x(:,1)) - min(x(:,1));
xval(i) = Om ;
yval(i) = Response_amp ;
% plot(Om, Response_amp, '.');
end
plot(xval,yval) ;

  1 Comment

donghun lee
donghun lee on 24 Mar 2020
thank you so much sir! this is perfect!!

Sign in to comment.

More Answers (0)

Sign in to answer this question.