
How can I plot a graph with a time dependent ode45?
4 views (last 30 days)
Show older comments
clc
clear all
A = 0.05; %Excitation Amplitude
l_r = 2; %Wave length of the road
v = 45; %Speed(m/s)
P = l_r/v; %Period
Om = 1/P*2*pi; %Forcing Frequency
%Om = %0.07m,2m,45m/s
k_l = 26400; %Linear stiffness
m = 483; %Mass
d = -0.1; %Stretching condition
l = 0.5; %Length of the spring
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
f = @(t,x) [ x(2); ...
-(4*k_s*(x(1)-A*sin(Om*t))*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2) - l))/ ...
(m*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2))) ];
T = 50;
x0 = [0,0];
[t,x] = ode45(f,[0,T],x0);
Response_amp = max(x(:,1)) - min(x(:,1));
plot(t,x(:,1))
xlabel('Time (s)')
ylabel('Amplitude (m)')
title('When d=-0.1', 'fontsize', 20)
set(gca,'FontSize',15)
Hi, all. This is my ode45 code. If I chagne A (Excitation Amplitude), Response_amp will have a different value. I wish to plot this relationship as A vs Response_amp.
0 Comments
Accepted Answer
Ameer Hamza
on 16 Mar 2020
Edited: Ameer Hamza
on 16 Mar 2020
You can visualize such relation with 3D plots
l_r = 2; %Wave length of the road
v = 45; %Speed(m/s)
P = l_r/v; %Period
Om = 1/P*2*pi; %Forcing Frequency
%Om = %0.07m,2m,45m/s
k_l = 26400; %Linear stiffness
m = 483; %Mass
d = -0.1; %Stretching condition
l = 0.5; %Length of the spring
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
fig = figure();
ax = axes();
hold(ax);
view([-53 33]);
grid on
A_array = 0.05:0.05:0.3; %Excitation Amplitude
T = 15;
x0 = [0,0];
for i=1:numel(A_array)
A = A_array(i);
f = @(t,x) [ x(2); ...
-(4*k_s*(x(1)-A*sin(Om*t))*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2) - l))/ ...
(m*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2))) ];
[t, x] = ode45(f,[0,T],x0);
Response_amp = max(x(:,1)) - min(x(:,1));
plot3(t, A*ones(size(t)), x(:,1), 'LineWidth', 1);
end
xlabel('Time (s)')
ylabel('A (m)')
zlabel('Amplitude (m)')
title('When d=-0.1')

2 Comments
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!