How to fourier transform a gaussian curve?
3 views (last 30 days)
Show older comments
Antonio Sarusic
on 26 Feb 2020
Answered: DISHANTKUMAR PATEL
on 1 Dec 2022
Hello,
I have the following function:
x_fit_func(x) = a1*exp(-((x-b1)/c1).^2);
a1, b1 and c1 are all constants and the function represents a gaussian curve.
Now I want to fourier transform this function and in theory i should again get a gaussian curve.
I tried it like this
x_F = fft(x_fit_func(x));
or like this
x_F = fft(x_fit_func);
But it always calculates something that is not a gaussian curve.
Does anyone know what I do wrong?
Thanks
Antonio
0 Comments
Accepted Answer
Star Strider
on 26 Feb 2020
The ‘x_fit_fcn’ is not syntax that MATLAB recognises (except in the Symbolic Math Toolbox), as a function.
Try this versiion instead:
x_fit_func = @(x) a1*exp(-((x-b1)/c1).^2);
I also calculated the fft of the result tthat produced. It works.
4 Comments
More Answers (1)
DISHANTKUMAR PATEL
on 1 Dec 2022
% isotropic Gaussian parameters n = 65; % resolution s = 2; % width x = linspace(-5,5,n); [X,Y] = meshgrid(x); gaus2d = exp( -(X.^2 + Y.^2 )/(2*s^2)); figure(1), clf surf(x,x,gaus2d) rotate3d on hold on % adjusting the radius of sphere x1 = x1*s; y1 = y1*s; z1 = z1; % add a constant to sphere, so that it is on top of gauss addi = max(gaus2d(:)) - min(z1(:)); z1 = z1 + addi; surf(x1,y1,z1) realCenter = [8,15,25]; [X,Y,Z] = sphere; XYZ = bsxfun(@plus,r*[X(:),Y(:),Z(:)], realCenter) % Label axes. xlabel('X', 'FontSize', 8); ylabel('Y', 'FontSize', 8); zlabel('Z', 'FontSize', 8); title('3D Sphere'); axis equal;
0 Comments
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!