Obtain a transfer function form a 2nd order D.E. using the Lapalce Transforms
2 views (last 30 days)
Show older comments
Joshua Scicluna
on 13 Jan 2020
Commented: Star Strider
on 15 Jan 2020
Hello,
(Using MATLAB) Is it possible to obtain a transfer function H(s) from a 2nd order D.E. using the Laplace Transfroms?
The D.E. is; d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
Thanks!
0 Comments
Accepted Answer
Star Strider
on 13 Jan 2020
It is, however it takes some effort and a bit of manual intervention in the end:
% d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
syms s t x(t) y(t) X(s) Y(s)
assume(X(s) ~= 0)
DE = diff(y,2) + 7.6*diff(y,1) + 4.2*y == x;
LDE = laplace(DE,t,s);
LDE = subs(LDE, {laplace(y, t, s), subs(diff(y(t), t), t, 0), laplace(x(t), t, s), y(0)},{Y(s), 0, X(s), 0})
LDETF = simplify( LDE, 'Steps',250)
LDETF = subs(LDETF,{X,Y},{1,1})
LDETF = ((5*s + 3)*(s + 7))/5
s = tf('s');
H = ((5*s + 3)*(s + 7))/5 % Copy ‘LDETF’ Result From Command Window & Paste Here
bode(H)
4 Comments
More Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!