Optimizing the output of ode45 by varying a parameter
2 views (last 30 days)
Show older comments
Hayford Azangbebil
on 9 Jan 2020
Commented: Torsten
on 7 Jan 2022
Dear all,
I'm solving a differential equation using Ode45 and I'm varying a variable R (from 20000 500000) to obtain an optimum (maximum) value of V, an output of the Ode45. I'm, however, at a lost as to how to go about it. Can anyone please offer me any suggestions as to how to go about it?
I will deeply appreciate it.
Thank you.
Hayford.
My code is shown below in the form of a nested function:
function nonlinear_func
Fs=5000;
Ts=1/Fs;
tspan=0:Ts:0.1-Ts; %timespan
R=20000; %load resistance to vary to obtain maximum voltage
IC=[0 0 0]; %% initial condition
%call ode45
[time,state_values]=ode45(@(t,x)nonlinear_func2(t,x,R),tspan,IC);
t=time;
displacement=state_values(:,1); % displacement vector
velocity=state_values(:,2); %velocity vector
V=state_values(:,3); %% generated voltage vector
figure (1)
plot(t,V,'r','linewidth',2);
xlabel('time [s]')
ylabel('Voltage [V]')
title('Generated Voltage Vs Time')
set(gca,'fontsize',12)
figure (2)
plot(time,displacement,'k','linewidth',2);
xlabel('time [s]')
ylabel('Displacement [m]')
title('Displacement Vs Time')
function xdot=nonlinear_func2(t,x,R)
xdot=zeros(1,3);
xdot(1)=x(2);
w=260;
pm=7500;
r=2e-3;
rm=2e-3; %Radius of magnet [m]
hc=6e-3; %height
mt=pi*r^2*hc*pm;
tp=0.25e-3;
lb=38e-3;
b=7.2e-3;
mc=0.0018; %calculated mass
m=mt+mc; %effective masss
Tau1=3415; %yield stress of the fluid
h=0.5e-3; %initial gap between cantilever and magnet in meters
eta=0.288; %viscosity of the fluiding Pa.s
k1=1132; %calculated stiffness of the beam
zeta=0.02; %damping ratio of the cantilever
k2=(4*pi*rm^3*Tau1)./(3*(h+max(x(1)))^2);
c2=(3*pi*eta*rm^4)/(2*(h+min(x(1)))^3);
d31=-315e-12; %d31 coefficient
s11=14.2e-12; %% compliance
phi=0.42;
s11D=s11*(1-phi^2);
z33t=4500; %%relative permittivity constant at constant stress
zeta33=z33t*8.85*10^-12;
z33s=zeta33-(d31^2)/s11; %%permittivity constant at constant strain
Cp=(z33s*lb*b)/tp;
alpha=sqrt((phi^2*Cp*(k1+k2)));
c1=2*zeta*sqrt(m*k1);
wr=sqrt((k1+k2)/m);
Rs=1/(wr*2*Cp);
g=6;
xdot(2)=g*sin(w*t)+(k2*h)/m-(2*alpha*x(3))/m-((c1+c2)*x(2))/m-((k2+k1)*x(1))/m;
xdot(3)=(alpha*x(2)-x(3)/(2*R))*1/(Cp);
xdot=xdot';
end
end
3 Comments
Accepted Answer
Guru Mohanty
on 21 Jan 2020
Hi, I understand that you are trying to find maximum value of V for a range of R. Here is a sample code. ‘V_max’ gives maximum V and ‘R_val’ gives corresponding R.
clc;
clear all;
Fs=5000;
Ts=1/Fs;
tspan=0:Ts:0.1-Ts; %timespan
R=20000:50000; %load resistance to vary to obtain maximum voltage
IC=[0 0 0]; %% initial condition
V=zeros(length(tspan),length(R));
displacement=zeros(length(tspan),length(R));
velocity=zeros(length(tspan),length(R));
state_values=zeros(length(tspan),3,length(R));
for i=1:length(R)
%call ode45
[time,state_values(:,:,i)]=ode45(@(t,x)nonlinear_func2(t,x,R(i)),tspan,IC);
t=time;
displacement(:,i)=state_values(:,1,i); % displacement vector
velocity(:,i)=state_values(:,2,i); %velocity vector
V(:,i)=state_values(:,3,i); %% generated voltage vector
end
dumm_V=max(V);
[V_max,R_val]=max(dumm_V);
figure (1)
plot(t,V(:,1),'r','linewidth',2);
xlabel('time [s]')
ylabel('Voltage [V]')
title('Generated Voltage Vs Time')
set(gca,'fontsize',12)
figure (2)
plot(time,displacement(:,i),'k','linewidth',2);
xlabel('time [s]')
ylabel('Displacement [m]')
title('Displacement Vs Time')
function xdot=nonlinear_func2(t,x,R)
xdot=zeros(1,3);
xdot(1)=x(2);
w=260;
pm=7500;
r=2e-3;
rm=2e-3; %Radius of magnet [m]
hc=6e-3; %height
mt=pi*r^2*hc*pm;
tp=0.25e-3;
lb=38e-3;
b=7.2e-3;
mc=0.0018; %calculated mass
m=mt+mc; %effective masss
Tau1=3415; %yield stress of the fluid
h=0.5e-3; %initial gap between cantilever and magnet in meters
eta=0.288; %viscosity of the fluiding Pa.s
k1=1132; %calculated stiffness of the beam
zeta=0.02; %damping ratio of the cantilever
k2=(4*pi*rm^3*Tau1)./(3*(h+max(x(1)))^2);
c2=(3*pi*eta*rm^4)/(2*(h+min(x(1)))^3);
d31=-315e-12; %d31 coefficient
s11=14.2e-12; %% compliance
phi=0.42;
s11D=s11*(1-phi^2);
z33t=4500; %%relative permittivity constant at constant stress
zeta33=z33t*8.85*10^-12;
z33s=zeta33-(d31^2)/s11; %%permittivity constant at constant strain
Cp=(z33s*lb*b)/tp;
alpha=sqrt((phi^2*Cp*(k1+k2)));
c1=2*zeta*sqrt(m*k1);
wr=sqrt((k1+k2)/m);
Rs=1/(wr*2*Cp);
g=6;
xdot(2)=g*sin(w*t)+(k2*h)/m-(2*alpha*x(3))/m-((c1+c2)*x(2))/m-((k2+k1)*x(1))/m;
xdot(3)=(alpha*x(2)-x(3)/(2*R))*1/(Cp);
xdot=xdot';
end
2 Comments
Torsten
on 7 Jan 2022
A double loop:
for i=1:numel( R)
for j=1:numel(S)
[time,state_values(:,:,i,j)]=ode45(@(t,x)nonlinear_func2(t,x,R(i),S(j)),tspan,IC);
...
end
end
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!