Deep Neural Network Tranining
2 views (last 30 days)
Show older comments
Hi,
I am having trouble in running the modified DeepLearningSpeechRecognitionExample_all that utilzis all the data:
"bird",...
"cat",...
"dog",...
"down",...
"eight",...
"five",...
"four",...
"happy",...
"house",...
"left",...
"marvin",...
"nine",...
"one",...
"right",...
"seven",...
"sheila",...
"six",...
"stop",...
"three",...
"two",...
"zero",...
"bed",...
"go",...
"no",...
"off",...
"on",...
"tree",...
"up",...
"wow",...
and modifyed parametrs in training (double number of feature vectors) that is:
segmentDuration = 1;
frameDuration = 0.020; %0.025;
hopDuration = 0.005; %0.010; <---------------- doubleing the sigze of feature vectors
numBands = 40; %40;
as well as more layers of neural network and larger feature vector size.
numF = 40; %12;
layers = [
imageInputLayer(imageSize)
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,2*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,3*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,4*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,5*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,4*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,3*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,2*numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
maxPooling2dLayer(3,'Stride',2,'Padding','same')
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
convolution2dLayer(3,numF,'Padding','same')
batchNormalizationLayer
reluLayer
%tanhLayer
dropoutLayer(dropoutProb)
fullyConnectedLayer(numClasses)
softmaxLayer
weightedClassificationLayer(classWeights)];
The code fials with this error:
...done
Training error: 1.2073%
Validation error: 3.8136%
Network size: 4772.4043 kB
Error using classify (line 149)
The length of GROUP must equal the number of rows in TRAINING.
Error in DeepLearningSpeechRecognitionExample_all (line 457)
[YPredicted,probs] = classify(1,x,"ExecutionEnvironment",'cpu');
I need a profesional help to figure out why am getting the length difference? Note that the reson why I am not able to track that problem down is due to the fact that this program requires at least a half-day to run in my computer before it failes.
Thank you
--Veton
Answers (0)
See Also
Categories
Find more on AI for Signals in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!