How do I improve my result of KNN classification using confusion matrix?

4 views (last 30 days)
Hello everyone.
I'm trying to classify a data set containing two classes using a Knn classifer.
and would like to evaluate the performance using its confusion matrix. But how can I use it with the KNN classifier?
This is my code of KNN classifer
model=ClassificationKNN.fit(X,Y,'NumNeighbors',9);
[~,result1]=predict(model,x);
  2 Comments
Image Analyst
Image Analyst on 16 Nov 2019
Edited: Image Analyst on 16 Nov 2019
You forgot to attach X and Y in a .mat file
save('answers.mat', 'X', 'Y');
Have you tried the "Classification Learner" App on the App tab of the tool ribbon?
You tagged it with image processing. What about this is at all related to image processing???

Sign in to comment.

Answers (1)

Ridwan Alam
Ridwan Alam on 20 Nov 2019
yhat = predict(model,x);
[C,order] = confusionmat(y,yhat);
Use this help file to understand how to use C and order:
  2 Comments
youb mr
youb mr on 20 Nov 2019
Error using confusionmat (line 98)
G and GHAT need to have same number of rows
Error in knn (line 189)
C = confusionmat(Y,yhat)
Ridwan Alam
Ridwan Alam on 20 Nov 2019
Here, I am assuming you have trained the model with “X” and “Y”, and are testing with “x” and “y”. “X” and “x” are different data, if in matrix format, they should have same number of columns but different row sizes.
“yhat” is the prediction of your model for test data “x” (not “X”). Confusionmat compares “yhat” with the ground truth or labels “y” (not “Y”) for the test data “x”.

Sign in to comment.

Categories

Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!