System Identification Loss Function
7 views (last 30 days)
Show older comments
Aladin Djuhera
on 13 Nov 2019
Commented: Aladin Djuhera
on 6 Jan 2020
Hi guys !
I have successfully estimated several linear Models for my system including ARX, SS and OE Models. For Model Evaluation and a little bit of presentation I would like to plot the Loss Function Progress. However, searching through the Matlab Doc and the extensive System Identification Toolbox Guide did not help. I can solely extract the last Loss Function Value via
loss_fcn_value = estimated_model.Report.Fit.LossFcn;
% Analogously for AIC, BIC and other measures
What I would like to see is a Loss Function Progress similar to the Neural Network Toolbox where I can see a distinct decline. I was think of something like this:
Thank you very much !
A.D.
Accepted Answer
Jesús Zambrano
on 3 Jan 2020
Hi Aladin,
You haven't mentioned it but I guess you have been fitting your models with Suspace method (n4sid). If so, that is a noniterative method. It supports several algorithms that can be selected as values of the N4Weight. What you get with your loss_fcn_value is the final fit.
If you select an iterative method, like the Prediction Error Minimization, you can see the the progress of the iterations, including the cost function value, as is shown below with an example.
%-------------------------------------------------------------
Initializing model parameters...
Estimating parameters using subspace algorithm...
Initialization complete.
Algorithm: Nonlinear least squares with automatically chosen line search method
Norm of First-order Improvement (%)
Iteration Cost Step opti mality Expected Achieved Bisections --------------------------------------------------------------
0 2.58018e-11 - 7.45e+04 13.7 - -
1 2.55764e-11 119 7.71e+05 13.7 0.873 1
2 2.47818e-11 25.7 9.19e+05 12 3.11 2
3 2.44525e-11 9.96 9.61e+05 12.6 1.33 3
4 2.41906e-11 9.15 1.01e+06 12.1 1.07 3
5 2.39705e-11 8.55 1.06e+06 11.6 0.91 3
6 2.37691e-11 8.11 1.1e+06 12.4 0.841 3
7 2.35665e-11 7.78 1.14e+06 12.2 0.852 3
8 2.33486e-11 7.53 1.15e+06 11.8 0.924 3
9 2.31081e-11 7.36 1.16e+06 12.1 1.03 3
10 2.28436e-11 7.23 1.15e+06 11.3 1.14 3
11 2.25592e-11 7.15 1.14e+06 11.8 1.25 3
12 2.25243e-11 14.2 1.28e+06 11.1 0.155 2
13 2.21484e-11 14.3 1.29e+06 12 1.67 2
14 2.15816e-11 14.3 1.23e+06 11.1 2.56 2
15 2.11078e-11 29 1.34e+06 10.6 2.2 1
16 2.00417e-11 60 1.41e+06 9.59 5.05 0
17 1.85941e-11 59 1.84e+05 7.19 7.22 0
18 1.83451e-11 46.9 5.52e+04 1.31 1.34 0
19 1.82854e-11 31.7 1.17e+04 0.532 0.326 0
20 1.8271e-11 16.5 4.41e+03 1.03 0.0789 0
------------------------------------------------------------------------------------------
Estimating parameter covariance...
done.
More Answers (0)
See Also
Categories
Find more on System Identification Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!