Deep Learning Prediction with Intel MKL-DNN_Issue_on_Build_and_Run_the_Executable
    3 views (last 30 days)
  
       Show older comments
    
I executed the code from Deep Learning Prediction with Intel MKL-DNN (https://www.mathworks.com/help/deeplearning/examples/deep-learning-prediction-with-intel-mkl-dnn.html). I successful on executing all the instructions except "Build and Run the Executable". 
=========================================================
Build and Run the Executable
Build the executable based on the target platform. On a Windows  platform, this example uses Microsoft® Visual Studio® 2017 for C++.
if ispc
    setenv('MATLAB_ROOT', matlabroot);
    system('make_mkldnn_win17.bat');
    system('resnet.exe peppers.png');
else
    setenv('MATLAB_ROOT', matlabroot);
    system('make -f Makefile_mkldnn_linux.mk');
    system('./resnet_exe peppers.png');
end
==========================================================
In this case, I am using Ubuntu 18 64 bit platform with 16GB RAM Intel I3 processor. I am using MATLAB 2019a. I am not getting any executable file so that I can execute it "system('./resnet_exe peppers.png')". I have no idea how to get this executable file in linux platform. On windows, they said Microsoft Visual Studio 2017 for C++. What about linux. Please help.
===========================================================
After "Generate a Static Library for the resnet_predict Function" I got the following files:
buildInfo.mat       
 cnn_resnet_res4d_branch2c_b
cnn_api.cpp          
cnn_resnet_res4d_branch2c_w
cnn_api.hpp          
cnn_resnet_res4e_branch2a_b
cnn_api.o            
cnn_resnet_res4e_branch2a_w
cnn_resnet_avg       
cnn_resnet_res4e_branch2b_b
cnn_resnet_conv1_b   
cnn_resnet_res4e_branch2b_w
cnn_resnet_conv1_w   
cnn_resnet_res4e_branch2c_b
cnn_resnet_fc1000_b  
cnn_resnet_res4e_branch2c_w
cnn_resnet_fc1000_w  
cnn_resnet_res4f_branch2a_b
cnn_resnet_labels.txt 
cnn_resnet_res4f_branch2a_w
cnn_resnet_res2a_branch1_b 
cnn_resnet_res4f_branch2b_b
cnn_resnet_res2a_branch1_w 
cnn_resnet_res4f_branch2b_w
cnn_resnet_res2a_branch2a_b 
cnn_resnet_res4f_branch2c_b
cnn_resnet_res2a_branch2a_w 
cnn_resnet_res4f_branch2c_w
cnn_resnet_res2a_branch2b_b 
cnn_resnet_res5a_branch1_b
cnn_resnet_res2a_branch2b_w 
cnn_resnet_res5a_branch1_w
cnn_resnet_res2a_branch2c_b 
cnn_resnet_res5a_branch2a_b
cnn_resnet_res2a_branch2c_w 
cnn_resnet_res5a_branch2a_w
cnn_resnet_res2b_branch2a_b 
cnn_resnet_res5a_branch2b_b
cnn_resnet_res2b_branch2a_w 
cnn_resnet_res5a_branch2b_w
cnn_resnet_res2b_branch2b_b 
cnn_resnet_res5a_branch2c_b
cnn_resnet_res2b_branch2b_w 
cnn_resnet_res5a_branch2c_w
cnn_resnet_res2b_branch2c_b 
cnn_resnet_res5b_branch2a_b
cnn_resnet_res2b_branch2c_w 
cnn_resnet_res5b_branch2a_w
cnn_resnet_res2c_branch2a_b 
cnn_resnet_res5b_branch2b_b
cnn_resnet_res2c_branch2a_w 
cnn_resnet_res5b_branch2b_w
cnn_resnet_res2c_branch2b_b 
cnn_resnet_res5b_branch2c_b
cnn_resnet_res2c_branch2b_w 
cnn_resnet_res5b_branch2c_w
cnn_resnet_res2c_branch2c_b 
cnn_resnet_res5c_branch2a_b
cnn_resnet_res2c_branch2c_w 
cnn_resnet_res5c_branch2a_w
cnn_resnet_res3a_branch1_b 
cnn_resnet_res5c_branch2b_b
cnn_resnet_res3a_branch1_w 
cnn_resnet_res5c_branch2b_w
cnn_resnet_res3a_branch2a_b 
cnn_resnet_res5c_branch2c_b
cnn_resnet_res3a_branch2a_w 
cnn_resnet_res5c_branch2c_w
cnn_resnet_res3a_branch2b_b 
codeInfo.mat
cnn_resnet_res3a_branch2b_w 
DeepLearningNetwork.cpp
cnn_resnet_res3a_branch2c_b 
DeepLearningNetwork.h
cnn_resnet_res3a_branch2c_w 
DeepLearningNetwork.o
cnn_resnet_res3b_branch2a_b 
examples
cnn_resnet_res3b_branch2a_w 
html
cnn_resnet_res3b_branch2b_b 
interface
cnn_resnet_res3b_branch2b_w 
MWCNNLayerImpl.cpp
cnn_resnet_res3b_branch2c_b 
MWCNNLayerImpl.hpp
cnn_resnet_res3b_branch2c_w 
MWCNNLayerImpl.o
cnn_resnet_res3c_branch2a_b 
MWConvLayer.cpp
cnn_resnet_res3c_branch2a_w 
MWConvLayer.hpp
cnn_resnet_res3c_branch2b_b 
MWConvLayerImpl.cpp
cnn_resnet_res3c_branch2b_w 
MWConvLayerImpl.hpp
cnn_resnet_res3c_branch2c_b 
MWConvLayerImpl.o
cnn_resnet_res3c_branch2c_w 
MWConvLayer.o
cnn_resnet_res3d_branch2a_b 
MWFusedConvReLULayer.cpp
cnn_resnet_res3d_branch2a_w 
MWFusedConvReLULayer.hpp
cnn_resnet_res3d_branch2b_b 
MWFusedConvReLULayerImpl.cpp
cnn_resnet_res3d_branch2b_w 
MWFusedConvReLULayerImpl.hpp
cnn_resnet_res3d_branch2c_b 
MWFusedConvReLULayerImpl.o
cnn_resnet_res3d_branch2c_w 
MWFusedConvReLULayer.o
cnn_resnet_res4a_branch1_b 
MWMkldnnUtils.cpp
cnn_resnet_res4a_branch1_w 
MWMkldnnUtils.hpp
cnn_resnet_res4a_branch2a_b 
MWMkldnnUtils.o
cnn_resnet_res4a_branch2a_w 
MWTargetNetworkImpl.cpp
cnn_resnet_res4a_branch2b_b 
MWTargetNetworkImpl.hpp
cnn_resnet_res4a_branch2b_w 
MWTargetNetworkImpl.o
cnn_resnet_res4a_branch2c_b 
predict.cpp
cnn_resnet_res4a_branch2c_w 
predict.h
cnn_resnet_res4b_branch2a_b 
predict.o
cnn_resnet_res4b_branch2a_w 
resnet_predict.cpp
cnn_resnet_res4b_branch2b_b 
resnet_predict.h
cnn_resnet_res4b_branch2b_w 
resnet_predict_initialize.cpp
cnn_resnet_res4b_branch2c_b 
resnet_predict_initialize.h
cnn_resnet_res4b_branch2c_w 
resnet_predict_initialize.o
cnn_resnet_res4c_branch2a_b 
resnet_predict.o
cnn_resnet_res4c_branch2a_w 
resnet_predict_ref.rsp
cnn_resnet_res4c_branch2b_b 
resnet_predict_rtw.mk
cnn_resnet_res4c_branch2b_w 
resnet_predict_terminate.cpp
cnn_resnet_res4c_branch2c_b 
resnet_predict_terminate.h
cnn_resnet_res4c_branch2c_w 
resnet_predict_terminate.o
cnn_resnet_res4d_branch2a_b 
resnet_predict_types.h
cnn_resnet_res4d_branch2a_w 
rtw_proj.tmw
cnn_resnet_res4d_branch2b_b 
rtwtypes.h
cnn_resnet_res4d_branch2b_w
=============================================
List of tools installed in my matlab:
ver
-----------------------------------------------------------------------------------------------------
MATLAB Version: 9.6.0.1150989 (R2019a) Update 4
MATLAB License Number: 40524824
Operating System: Linux 5.0.0-23-generic #24~18.04.1-Ubuntu SMP Mon Jul 29 16:12:28 UTC 2019 x86_64
Java Version: Java 1.8.0_181-b13 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode
-----------------------------------------------------------------------------------------------------
MATLAB                                                Version 9.6         (R2019a)
Simulink                                              Version 9.3         (R2019a)
Audio Toolbox                                         Version 2.0         (R2019a)
Bioinformatics Toolbox                                Version 4.12        (R2019a)
Communications Toolbox                                Version 7.1         (R2019a)
Computer Vision Toolbox                               Version 9.0         (R2019a)
Control System Toolbox                                Version 10.6        (R2019a)
DSP System Toolbox                                    Version 9.8         (R2019a)
Deep Learning Toolbox                                 Version 12.1        (R2019a)
Fixed-Point Designer                                  Version 6.3         (R2019a)
GPU Coder                                             Version 1.3         (R2019a)
HDL Coder                                             Version 3.14        (R2019a)
HDL Verifier                                          Version 5.6         (R2019a)
Image Acquisition Toolbox                             Version 6.0         (R2019a)
Image Processing Toolbox                              Version 10.4        (R2019a)
Instrument Control Toolbox                            Version 4.0         (R2019a)
MATLAB Coder                                          Version 4.2         (R2019a)
MATLAB Compiler                                       Version 7.0.1       (R2019a)
MATLAB Compiler SDK                                   Version 6.6.1       (R2019a)
Optimization Toolbox                                  Version 8.3         (R2019a)
Parallel Computing Toolbox                            Version 7.0         (R2019a)
Sensor Fusion and Tracking Toolbox                    Version 1.1         (R2019a)
Signal Processing Toolbox                             Version 8.2         (R2019a)
Simulink Control Design                               Version 5.3         (R2019a)
Statistics and Machine Learning Toolbox               Version 11.5        (R2019a)
Symbolic Math Toolbox                                 Version 8.3         (R2019a)
System Composer                                       Version 1.0         (R2019a)
System Identification Toolbox                         Version 9.10        (R2019a)
Text Analytics Toolbox                                Version 1.3         (R2019a)
>>   
0 Comments
Answers (1)
  Praveen Kumar Gajula
    
 on 18 Jun 2020
        Hi,
You need to execute the below commands for linux. 
    setenv('MATLAB_ROOT', matlabroot);
    system('make -f Makefile_mkldnn_linux.mk');
    system('./resnet_exe peppers.png');
These commands will build the resent_exe.
Thank you,
Praveen.
0 Comments
See Also
Categories
				Find more on Deep Learning Toolbox in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
