Marking a single point on a graph

4 views (last 30 days)
This is my code for finding normal and shear stress:
sigma_x = 8;
sigma_y = -12;
tau_xy = -6;
theta = [-90:.05:90];
%Normal Stress
sigma_x1 = ((sigma_x + sigma_y)/2)+(((sigma_x - sigma_y)/2)*(cosd(2*theta)))+(tau_xy*(sind(2*theta)));
sigma_y1 = ((sigma_x + sigma_y)/2)-(((sigma_x - sigma_y)/2)*(cosd(2*theta)))-(tau_xy*(sind(2*theta)));
%Shear Stress
tau_x1y1 = -(((sigma_x - sigma_y)/2)*(sind(2*theta)))+(tau_xy*(cosd(2*theta)));
%plot
plot(theta, tau_x1y1),xlabel('Degree of Rotation'), ylabel('Shear Stress'),title('Shear Stress Based on Rotation')
grid on, axis equal
I need to know how to just mark the points where shear stress = 0.
Thank you.

Accepted Answer

Star Strider
Star Strider on 23 Jun 2019
This first finds the approximate indices for the zero-crossings, then interpolates to find the exact values:
sigma_x = 8;
sigma_y = -12;
tau_xy = -6;
theta = [-90:.05:90];
%Normal Stress
sigma_x1 = ((sigma_x + sigma_y)/2)+(((sigma_x - sigma_y)/2)*(cosd(2*theta)))+(tau_xy*(sind(2*theta)));
sigma_y1 = ((sigma_x + sigma_y)/2)-(((sigma_x - sigma_y)/2)*(cosd(2*theta)))-(tau_xy*(sind(2*theta)));
%Shear Stress
tau_x1y1 = -(((sigma_x - sigma_y)/2)*(sind(2*theta)))+(tau_xy*(cosd(2*theta)));
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
tauzix = zci(tau_x1y1); % Approximate Zero-Crossing Indices
for k = 1:numel(tauzix)
xval(k) = interp1(tau_x1y1(tauzix(k)-1:tauzix(k)+1), theta(tauzix(k)-1:tauzix(k)+1), 0); % ‘Theta’ Values At Zero-Crossings
end
%plot
plot(theta, tau_x1y1)
hold on
plot(xval, zeros(size(xval)), 'pg')
hold off
xlabel('Degree of Rotation'), ylabel('Shear Stress'),title('Shear Stress Based on Rotation')
grid on, axis equal
  2 Comments
Paul Bradford
Paul Bradford on 23 Jun 2019
Worked very well. Thank you.
Star Strider
Star Strider on 23 Jun 2019
As always, my pleasure.

Sign in to comment.

More Answers (0)

Categories

Find more on Stress and Strain in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!