Marking a single point on a graph
4 views (last 30 days)
Show older comments
Paul Bradford
on 23 Jun 2019
Commented: Star Strider
on 23 Jun 2019
This is my code for finding normal and shear stress:
sigma_x = 8;
sigma_y = -12;
tau_xy = -6;
theta = [-90:.05:90];
%Normal Stress
sigma_x1 = ((sigma_x + sigma_y)/2)+(((sigma_x - sigma_y)/2)*(cosd(2*theta)))+(tau_xy*(sind(2*theta)));
sigma_y1 = ((sigma_x + sigma_y)/2)-(((sigma_x - sigma_y)/2)*(cosd(2*theta)))-(tau_xy*(sind(2*theta)));
%Shear Stress
tau_x1y1 = -(((sigma_x - sigma_y)/2)*(sind(2*theta)))+(tau_xy*(cosd(2*theta)));
%plot
plot(theta, tau_x1y1),xlabel('Degree of Rotation'), ylabel('Shear Stress'),title('Shear Stress Based on Rotation')
grid on, axis equal
I need to know how to just mark the points where shear stress = 0.
Thank you.
0 Comments
Accepted Answer
Star Strider
on 23 Jun 2019
This first finds the approximate indices for the zero-crossings, then interpolates to find the exact values:
sigma_x = 8;
sigma_y = -12;
tau_xy = -6;
theta = [-90:.05:90];
%Normal Stress
sigma_x1 = ((sigma_x + sigma_y)/2)+(((sigma_x - sigma_y)/2)*(cosd(2*theta)))+(tau_xy*(sind(2*theta)));
sigma_y1 = ((sigma_x + sigma_y)/2)-(((sigma_x - sigma_y)/2)*(cosd(2*theta)))-(tau_xy*(sind(2*theta)));
%Shear Stress
tau_x1y1 = -(((sigma_x - sigma_y)/2)*(sind(2*theta)))+(tau_xy*(cosd(2*theta)));
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
tauzix = zci(tau_x1y1); % Approximate Zero-Crossing Indices
for k = 1:numel(tauzix)
xval(k) = interp1(tau_x1y1(tauzix(k)-1:tauzix(k)+1), theta(tauzix(k)-1:tauzix(k)+1), 0); % ‘Theta’ Values At Zero-Crossings
end
%plot
plot(theta, tau_x1y1)
hold on
plot(xval, zeros(size(xval)), 'pg')
hold off
xlabel('Degree of Rotation'), ylabel('Shear Stress'),title('Shear Stress Based on Rotation')
grid on, axis equal
2 Comments
More Answers (0)
See Also
Categories
Find more on Stress and Strain in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!