Coloring The Dots in biPlot Chart

17 views (last 30 days)
I have created biplot as below and I'm looking for a way to distinguish the dots by different colors according to their group name. There are 12 groups and here are mydata and codes.
PC1andPC2.png
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
figure(1)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure(3)
biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);

Accepted Answer

Adam Danz
Adam Danz on 25 Apr 2019
Edited: Adam Danz on 25 Apr 2019
The biplot() function has an output that lists handles to all objects in the plot. All you need to do is isolate the handles to the scatter points by referencing the handle tags and then assign color based on the category.
If you have any questions, feel free to leave a comment.
% Your code
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
% figure(1) (No need for this)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure()
% Store handle to biplot
h = biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);
% Identify each handle
hID = get(h, 'tag');
% Isolate handles to scatter points
hPt = h(strcmp(hID,'obsmarker'));
% Identify cluster groups
grp = findgroups(clusters); %r2015b or later - leave comment if you need an alternative
grp(isnan(grp)) = max(grp(~isnan(grp)))+1;
grpID = 1:max(grp);
% assign colors and legend display name
clrMap = lines(length(unique(grp))); % using 'lines' colormap
for i = 1:max(grp)
set(hPt(grp==i), 'Color', clrMap(i,:), 'DisplayName', sprintf('Cluster %d', grpID(i)))
end
% add legend to identify cluster
[~, unqIdx] = unique(grp);
legend(hPt(unqIdx))
You can select a different color map (I'm using 'lines'). : https://www.mathworks.com/help/matlab/ref/colormap.html#buc3wsn-1-map190425 094457-Figure 1.jpg
  11 Comments
Adam Danz
Adam Danz on 29 Nov 2020
You need to keep track of your random permutation indices and apply the same permutation to the species vector.
randIdx = randperm(size(iris, 1));
irisRandom = iris(randIdx, :);
species = species(randIdx);

Sign in to comment.

More Answers (0)

Categories

Find more on Data Distribution Plots in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!