Matrix dimenssion must agree
1 view (last 30 days)
Show older comments
Hello,
this is my code to find out the best values but getting some error please any one help me out to solve this.
function KH
clc;
close all;
clear all
format long
% Human Inserted %
figure;
imshow('pc3.png');
hold on
%Randomly CS are Distributed%
Mmin = 65;
Mmax = 88;
M = Mmin+rand(1,4)*(Mmax-Mmin);
Nmin = 10;
Nmax= 50;
N = Nmin+rand(1,4)*(Nmax-Nmin);
plot(M, N, 'b*');
grid on
grid on
Xmin = 58;
Xmax = 105;
XX = Xmin+rand(1,30)*(Xmax-Xmin);
Ymin = 60;
Ymax= 150;
YY = Ymin+rand(1,30)*(Ymax-Ymin);
plot(XX, YY, 'b*');
hold on;
plot(49,70, 'b*');
plot(45,110, 'b*');
plot(30,139, 'b*');
plot(138,149, 'b*');
plot(128,129, 'b*');
plot(108,89, 'b*');
hold on
Emin=56;
Emax=65;
E = Emin+rand(1,5)*(Emax-Emin);
Fmin=155;
Fmax=280;
F = Fmin+rand(1,5)*(Fmax-Fmin);
plot(E,F, 'b*');
hold on
Gmin=100;
Gmax=108;
G = Gmin+rand(1,5)*(Gmax-Gmin);
Hmin=155;
Hmax=280;
H = Hmin+rand(1,5)*(Hmax-Hmin);
plot(G,H, 'b*');
hold on
A=100;
B=140;
plot(A,B, 'mo-', 'MarkerSize', 10,'LineWidth', 2);
hold on
% plot 13 Sensor nodes%
x1 = [105,107,58,58,75,146,118,18,48,55, 90,80,80];
y1 = [190,280,190,280,145,153,103,153,103,65,85,50,10];
plot(x1, y1, 'r.','MarkerSize', 20, 'LineWidth', 2);
for i = 1:4
x2(i) = M(i);
y2(i) = N(i);
end
for i = 1:30
x2(4+i) = XX(i);
y2(4+i) = YY(i);
end
for i = 1:5
x2(34+i) = E(i);
y2(34+i) = F(i);
end
for i = 1:5
x2(39+i) = G(i);
y2(39+i) = H(i);
end
x2(45)= 49;
y2(45)= 70;
x2(46)= 45;
y2(46)=110;
x2(47)= 30;
y2(47)=139;
x2(48)= 138;
y2(48)= 149;
x2(49)= 128;
y2(49)=129;
x2(50)= 108;
y2(50)=89;
% Numbering 13 Sensor%
for i = 1:13
O(i) = x1(i);
P(i) = y1(i);
text(O(i),P(i), num2str(i));
end
%Numbering 50 CS%
for i = 1:50
O(i) = x2(i);
P(i) = y2(i);
text(O(i),P(i),num2str(i));
end
% Plot set 1 in red
plot(x1, y1, 'r.', 'MarkerSize', 13);
% Plot set 2 in blue
hold on;
plot(x2, y2, 'b*', 'MarkerSize', 5);
grid on;
% calculate the distance from 13 sensor to Relay%
for i=1:13
for j=1:50
% Find distances between every point in set 1 to every point in set #2.
distances(i,j) = pdist2([x1(i),y1(i)], [x2(j), y2(j)], 'euclidean');
end
end
% find the minimum Distances%
[minDistance, indexOfClosest] = min(distances);
x1Closest = x2(indexOfClosest);
y1Closest = y2(indexOfClosest);
disp (distances);
% calculate the distance between Relay to Relay%
for i=1:50
for j=1:50
% Find distances between every point in set 1 to every point in set #2.
dis_rly(i,j) = pdist2([x2(i),y2(i)], [x2(j), y2(j)], 'euclidean');
end
end
disp (dis_rly);
% find out the distance between Relay to sink%%
dist1 = sqrt((x2-A).^2+(y2-B).^2)
%logicalindexes = dist1 < 30.00000;
%x2Nearby = x2(logicalindexes)
%y2Nearby = y2(logicalindexes)
%disp (dist1);
% Find out the distance between Sensor to Sink %%%
dist2 =sqrt((x1-A).^2+(y1-B).^2)
logicalindexes = dist2 < 30.00000;
x1Nearby = x1(logicalindexes);
y1Nearby = y1(logicalindexes);
disp (minDistance);
% opposition based alloation %
NR=10;
MI=200;
NP=10;
NK=5;
UB = 10*ones(1,10);
LB = -10*ones(1,10);
Dt = mean(abs(UB-LB))/2; % Scale Factor
F = zeros(NP,NK);D = zeros(1,NK);V = zeros(NP,NK); %R = zeros(NP,NK);
Vf = 0.02; Dmax = 0.005; Nmax = 0.01; Sr = 0;
C_flag = 1;
for nr = 1:NR
a=1:50;
for i = 1:5
out(i,:) = a(randperm(numel(a),10))
opo_out(i,:) = 51-out(i,:)
end
%for i = 1:NP
%for j = 1:NK
%out(i,j) = LB(j) + (UB(j) - LB(j)).*rand(0,1);
%opo_out(i,j) = LB(j) + (UB(j)-out(z1,z2));
%end
%end
N=10;
data_agg=1;
Er = 36.1;
s=250;
Et=16.7;
Eamp=1.97;
% Calculate the Energy of Relay nodes %
for j = 1:5
for i=1:10
k= 1;
if ((dist2(j))> 30.000000)
Etf(j,i,k)= N*data_agg*Et*(s*dist1(k,out(j,i)))+N*s*data_agg*Et;
Erf = (N-1)*Er*s;
OEtf(j,i,k)= N*data_agg*Et*(s*dist1(k,opo_out(j,i)))+N*s*data_agg*Et;
Ef_total(j,i,k) = Etf(j,i,k)+Erf ;
OEf_total(j,i,k) = OEtf(j,i,k)+Erf;
end
end
end
% Calculate The Energy Of Sensor nodes %%%
for j = 1 :5
for i = 1:10
for k = 1:13
Ets(j,i,k)=s*(Et+Eamp*(distances(k,out(j,i)).^2));
OEts(j,i,k)=s*(Et+Eamp*(distances(k,opo_out(j,i)).^2));
end
end
end
disp(Ets);
disp(OEts);
d0=30;
c=10;
tic
%Claculate the fitness %%%
for i = 1:5
fitness(i,:)= (c*out(i))+(c*((Ets(i)*1)+Ef_total(1)))+(c*sqrt((distances(k,out(i))-d0).^2))+(c*1);
Ofitness(i,:)= (c*opo_out(i))+(c*((OEts(i)*1)+OEf_total(1)))+(c*sqrt((distances(k,opo_out(i))-d0).^2))+(c*1);
end
wtime=toc
fprintf(1, 'fitness took %f seconds to Run.\n',wtime);
disp(fitness);
disp(Ofitness);
%K = min(Fit)
i = 1:5;
if (fitness(i) > Ofitness(i))
K(i) = Ofitness(i)
X = opo_out
else
K(i) = fitness(i)
X = out
end
%% Optimization & Simulation
Kib=K;
Xib=X;
[Kgb(1,nr), A] = min(K)
Xgb(:,1,nr) = X(:,A)
for j = 1:MI
% Virtual Food
for ll = 1:NP
Sf = (sum(X(ll))./K);
end
Xf(:,j) = Sf./(sum(1./K)) %Food Location
Kf = (c*Xf(j))+(c*((Ets(i)*1)+Ef_total(1)))+(c*sqrt((distances(k,int64(Xf(j)))-d0).^2))+(c*1);
if 2<=j
if Kf(j-1)<Kf(j)
Xf(:,j) = Xf(:,j-1);
Kf(j) = Kf(j-1);
end
end
Kw_Kgb = max(K)-Kgb(j,nr);
w = (0.1+0.8*(1-j/MI))
for i = 1:NK
% Calculation of distances
Rf = Xf(:,j)-X(:,i);
Rgb = Xgb(:,j,nr)-X(:,i);
for ii = 1:NK
RR(:,ii) = X(:,ii)-X(:,i);
end
R = sqrt(sum(RR.*RR))
% % % % % % % % % % % % % Movement Induced % % % % % % % % % %
% Calculation of BEST KRILL effect
if Kgb(j,nr) < K(i)
alpha_b = -2*(1+rand*(j/MI))*(Kgb(j,nr) - K(i)) /Kw_Kgb/ sqrt(sum(Rgb.*Rgb)) * Rgb
else
alpha_b=0;
end
% Calculation of NEIGHBORS KRILL effect
nn=0;
ds = mean(R)/5;
alpha_n = 0;
for n=1:NK
if and(R(i)<ds,n~=i)
nn=nn+1;
if and(nn<=4,K(i)~=K(n))
alpha_n = alpha_n-(K(n) - K(i)) /Kw_Kgb/ R(n) * RR(:,n)
end
end
end
disp(alpha_n);
% Movement Induced
V(:,i) = w*V(:,i)+Nmax*(alpha_b+alpha_n);
% % % % % % % % % % % % % Foraging Motion % % % % % % % % % %
% Calculation of FOOD attraction
if Kf(j) < K(i)
Beta_f=-2*(1-j/MI)*(Kf(j) - K(i)) /Kw_Kgb/ sqrt(sum(Rf.*Rf)) * Rf;
else
Beta_f=0;
end
% Calculation of BEST psition attraction
Rib = Xib(:,i)-X(:,i);
if Kib(i) < K(i)
Beta_b=-(Kib(i) - K(i)) /Kw_Kgb/ sqrt(sum(Rib.*Rib)) *Rib;
else
Beta_b=0;
end
% Foraging Motion
F(:,i) = w*F(:,i)+Vf*(Beta_b+Beta_f);
% % % % % % % % % % % % % Physical Diffusion % % % % % % % % %
D = Dmax*(1-j/MI)*floor(rand+(K(i)-Kgb(j,nr))/Kw_Kgb)*(2*rand(NP,1)-ones(NP,1));
% % % % % % % % % % % % % Motion Process % % % % % % % % % % %
DX = Dt*(V(:,i)+F(:,i));
% % % % % % % % % % % % % Crossover % % % % % % % % % % % % %
if C_flag ==1
C_rate = 0.8 + 0.2*(K(i)-Kgb(j,nr))/Kw_Kgb;
Cr = rand(NP,1) < C_rate ;
% Random selection of Krill No. for Crossover
NK4Cr = round(NK*rand+.5);
% Crossover scheme
X(:,i)=X(:,NK4Cr).*(1-Cr)+X(:,i).*Cr;
end
% Update the position
X(:,i)=X(:,i)+DX;
%X(:,i)=findlimits(X(:,i),LB,UB,Xgb(:,j,nr)); % Bounds Checking
K(i)=(c*X(i))+(c*((Ets(i)*1)+Ef_total(1)))+(c*sqrt((distances(k,int64(X(i)))-d0).^2))+(c*1);;
if K(i)<Kib(i)
Kib(i)=K(i);
Xib(:,i)=X(:,i);
end
end
% Update the current best
[Kgb(j+1,nr), A] = min(K);
if Kgb(j+1,nr)<Kgb(j,nr)
Xgb(:,j+1,nr) = X(:,A);
else
Kgb(j+1,nr) = Kgb(j,nr);
Xgb(:,j+1,nr) = Xgb(:,j,nr);
end
end
end
%% Post-Processing
[Best, Ron_No] = min(Kgb(end,:))
Xgb(:,end,Ron_No)
Mean = mean(Kgb(end,:))
Worst = max(Kgb(end,:))
Standard_Deviation = std(Kgb(end,:))
Thank you
3 Comments
Answers (0)
See Also
Categories
Find more on Linear Programming and Mixed-Integer Linear Programming in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!