Solving a nonlinear ODE with derivative squared
3 views (last 30 days)
Show older comments
I'm trying to solve a nonlinear ODE which looks something like this:. I know I can use the implicit solver ode15i but the problem is also stiff so I'd prefer to use ode15s. Is it possible to solve this type of nonlinear ode using ode15s? Any suggestions would be appreciated, thank you!
2 Comments
Torsten
on 4 Feb 2019
As for all quadratic equations, there are two solutions for y'. Do you know which one you'll have to take ?
Bill Greene
on 4 Feb 2019
ode15i is based on backward differentiation formulas so I would expect it to be as effective as ode15s for stiff problems. That has also been my experience with the two solvers. Do you have an example stiff ODE where this is not the case?
Accepted Answer
Star Strider
on 1 Feb 2019
Edited: Star Strider
on 3 Feb 2019
One approach:
syms a b c d y(t) T Y
Dy = diff(y);
DE = a*Dy^2 + b*Dy + c*y == d;
isoDE = isolate(DE,Dy)
[VF,Sbs] = odeToVectorField(isoDE)
odefcn = matlabFunction(VF, 'Vars',{T,Y,a b c d});
odefcn = @(T,Y,a,b,c,d)[((b+sqrt(a.*d.*4.0+b.^2-a.*c.*Y(1).*4.0)).*(-1.0./2.0))./a; ((b-sqrt(a.*d.*4.0+b.^2-a.*c.*Y(1).*4.0)).*(-1.0./2.0))./a]
a = 3;
b = 5;
c = 7;
d = 11;
[T,Y] = ode15s(@(T,Y)odefcn(T,Y,a,b,c,d), [0 5], [0;0]);
figure
plot(T, Y)
grid
It works!
2 Comments
Star Strider
on 3 Feb 2019
As always, my pleasure!
I‘m not sure if it’s possible express systems of PDEs in the Symbolic Math Toolbox.
You most likelly need the Partial Differential Equation Toolbox (link). I haven’t used it recently, so I have no recent experience with it.
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!