solve a partial differential equation
4 views (last 30 days)
Show older comments
Hi! I want to solve a second partial differential equation.

The general solution is

Which command should I use to get the general solution? I think dsolve doesn't work well. Thanks for helping me.
Accepted Answer
Stephan
on 21 Oct 2018
Hi,
the following code solves the equation with the initial conditions:
y(0)=0
dy/dx(0)=0
Then it rewrites the result in terms of sin ans cos:
syms y(x) x E I N P c l Dyt(x)
eqn = E*I*diff(y,x,2)+N*y == -P*c/l*x;
[eqns, vars] = reduceDifferentialOrder(eqn,y);
conds = [y(0)==0,Dyt(0)==0];
sol = dsolve(eqns,conds);
sol_sin = simplify(rewrite(sol.y,'sin'))
I think that was the question.
Best regards
Stephan
10 Comments
Stephan
on 21 Oct 2018
Edited: Stephan
on 21 Oct 2018
yes - this is what subs is for - i would suggest to this before reducing the differential order:
syms y(x) x E I N P c l Dyt(x) k
eqn = diff(y,x,2)+N/E*I*y == -P*c/(l*E*I)*x;
eqn = subs(eqn,(N/E*I),k^2)
[eqns, vars] = reduceDifferentialOrder(eqn,y);
conds = [y(0)==0,Dyt(0)==0];
sol = dsolve(eqns,conds)
sol_sin = rewrite(sol.y,'sin')
which gives:
sol_sin =
- ((P*c*1i)/(2*E*I*k^3*l) + (P*c*(- 1 + k*x*1i)*(sin(k*x)*1i - 2*sin((k*x)/2)^2 + 1)*1i)/(2*E*I*k^3*l))*(sin(k*x)*1i + 2*sin((k*x)/2)^2 - 1) - ((P*c*1i)/(2*E*I*k^3*l) + (P*c*(1 + k*x*1i)*(sin(k*x)*1i + 2*sin((k*x)/2)^2 - 1)*1i)/(2*E*I*k^3*l))*(sin(k*x)*1i - 2*sin((k*x)/2)^2 + 1)
You can also get rid of the imaginary parts of the results by making some assumptions. For example i suspect E to be youngs modul, which should be a real number and positive always:
syms y(x) x E I N P c l Dyt(x) k
eqn = diff(y,x,2)+N/E*I*y == -P*c/(l*E*I)*x;
eqn = subs(eqn,(N/E*I),k^2)
[eqns, vars] = reduceDifferentialOrder(eqn,y);
conds = [y(0)==0,Dyt(0)==0];
assume([x P c l k],'real');
assumeAlso(c>=0 & l>=0 & k>=0);
assumptions
sol = dsolve(eqns,conds)
sol_sin = rewrite(sol.y,'sin')
results in:
sol_sin =
(P*c*sin(k*x))/(E*I*k^3*l) - (P*c*x)/(E*I*k^2*l)
You should check if the assumptions i made are correct in your case and modify them if needed.
More Answers (0)
See Also
Categories
Find more on Equation Solving in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

