What is the fit method to exclude the shadow??

3 views (last 30 days)
Here the image...anyone please help to answer this challenge..

Accepted Answer

Image Analyst
Image Analyst on 21 Aug 2018
Try this:
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clearvars;
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 16;
%=======================================================================================
% Read in image.
fullFileName = fullfile(pwd, '63.jpg');
[folder, baseFileName, ext] = fileparts(fullFileName);
rgbImage = imread(fullFileName);
% Shrink it to speed it up
% rgbImage = imresize(rgbImage, 0.75);
% Get the dimensions of the image.
[rows, columns, numberOfColorChannels] = size(rgbImage);
% Display the original image.
subplot(2, 2, 1);
imshow(rgbImage, []);
axis on;
caption = sprintf('Original Color Image "%s"', baseFileName);
title(caption, 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0.05 1 0.95]);
% Get rid of tool bar and pulldown menus that are along top of figure.
% set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')
% Get mask for outer gray, and inner blue parts of the wheel by doing color segmentations.
[mask, maskedRGBImage] = createMask(rgbImage);
% Clean up noise by filling holes and taking largest blob only.
mask = imfill(mask, 'holes');
mask = bwareafilt(mask, 1);
% Display the mask image.
subplot(2, 2, 2);
imshow(mask);
axis on;
title('Mask, binary image', 'FontSize', fontSize, 'Interpreter', 'None');
% Mask the image and show the masked image.
subplot(2, 2, 3);
imshow(maskedRGBImage, []);
axis on;
title('Masked RGB image', 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
% Display the original image with mask boundary over it.
subplot(2, 2, 4);
imshow(rgbImage, []);
axis on;
caption = sprintf('Color Image with Boundary');
title(caption, 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
% Plot boundaries
boundaries = bwboundaries(mask);
hold on;
numberOfBoundaries = size(boundaries, 1);
for k = 1 : numberOfBoundaries
thisBoundary = boundaries{k};
plot(thisBoundary(:,2), thisBoundary(:,1), 'r', 'LineWidth', 3);
end
hold off;
function [BW,maskedRGBImage] = createMask(RGB)
%createMask Threshold RGB image using auto-generated code from colorThresholder app.
% [BW,MASKEDRGBIMAGE] = createMask(RGB) thresholds image RGB using
% auto-generated code from the colorThresholder app. The colorspace and
% range for each channel of the colorspace were set within the app. The
% segmentation mask is returned in BW, and a composite of the mask and
% original RGB images is returned in maskedRGBImage.
% Auto-generated by colorThresholder app on 20-Aug-2018
%------------------------------------------------------
% Convert RGB image to chosen color space
I = rgb2hsv(RGB);
% Define thresholds for channel 1 based on histogram settings
channel1Min = 0.959;
channel1Max = 0.099;
% Define thresholds for channel 2 based on histogram settings
channel2Min = 0.194;
channel2Max = 1.000;
% Define thresholds for channel 3 based on histogram settings
channel3Min = 0.410;
channel3Max = 1.000;
% Create mask based on chosen histogram thresholds
sliderBW = ( (I(:,:,1) >= channel1Min) | (I(:,:,1) <= channel1Max) ) & ...
(I(:,:,2) >= channel2Min ) & (I(:,:,2) <= channel2Max) & ...
(I(:,:,3) >= channel3Min ) & (I(:,:,3) <= channel3Max);
BW = sliderBW;
% Initialize output masked image based on input image.
maskedRGBImage = RGB;
% Set background pixels where BW is false to zero.
maskedRGBImage(repmat(~BW,[1 1 3])) = 0;
end
Notes: It's not perfect because you don't have good control over your image capture situation. Get rid of shadows and background clutter to get a better masking.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!