Numerically stable implementation of sin(y*atan(x))/x

3 views (last 30 days)
I am trying to implement a modified version of the Magic Tyre Formula. The simplified version of my problem ist that i need to calculate this function:
sin(y*atan(x))/x
especially at and around x = 0. I know that this function is defined for x = 0 because:
sin(y*atan(x))/x = sin(y*atan(x))/(y*atan(x)) * (y*atan(x))/x = sin(c)/c * atan(x)/x * y with c = y*atan(x)
Both
sin(c)/c and atan(x)/x
are defined for x = 0 and c = 0.
I would like to use built in functions to solve my problem, because im not that good at numerics.
What I have tried until now is:
1) I can calculate sin(c)/c by using the built in sinc function, but then I still have to calculate atan(x)/x which i have found no solution for by now.
2) I know that
sin(atan(x)) = x/(sqrt(1+x^2))
But i havent found a way to rewrite this equation using
sin(y*atan(x))
Does anyone have an idea how to solve my problem?

Accepted Answer

Torsten
Torsten on 17 May 2018
By L'Hospital, lim (x->0) sin(y*atan(x))/x = y.
Thus define your function to be y if x=0 and sin(y*atan(x))/x if x href = ""</a> 0.
Best wishes
Torsten.
  7 Comments
Torsten
Torsten on 18 May 2018
I suggest
function z = your_function(x,y)
z = y.*ones(size(x));
i = find(x);
z(i) = sin(atan(x(i)).*z(i))./x(i);
Best wishes
Torsten.

Sign in to comment.

More Answers (2)

Majid Farzaneh
Majid Farzaneh on 17 May 2018
Hi, You can easily add an epsilon to x like this:
sin(y*atan(x+eps))/(x+eps)
  1 Comment
Lukas
Lukas on 17 May 2018
Thank you for the idea, unfortunately thats exactly what i am trying to avoid, because I want to use this formula in a simulation and i cant guarantee that for example x does not equal -eps.
I even thought about using for example the power series of atan(x) and divide it by x:
atan(x) = sum((-1)^k * (x^(2k+1))/(2k+1),k = 0..inf)
atan(x)/x = sum((-1)^k * (x^(2k))/(2k+1),k = 0..inf)
But then i still dont know how many iterations i need, to use the full range of double precision and I am still not sure if this would be an efficient implementation.

Sign in to comment.


Ameer Hamza
Ameer Hamza on 17 May 2018
How about defining it like this
f = @(x,y) y.*(x==0) + sin(y.*atan(x))./(x+(x==0)*1);

Categories

Find more on MATLAB in Help Center and File Exchange

Products


Release

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!