Is my code for bvp4c for a set of odes is correctly written

2 views (last 30 days)
I have the following set of equations:
f"=g(g^2+gamma^2)/(g^2+lambda*gamma^2) ------ (1)
g'= (1/3)*f'^2-(2/3)*(f*f")+ Mn*f' ------------------------(2)
t"+Rd*t"+ 2*Pr*f*t'/3+ Nb*t'*p'+Nt*(t')^2= 0------(3)
p"+(2*Lew*f*p')/3+ Nt*t"/Nb= 0 ------------------------(4)
'f', 'g', 't', 'p' are the dependent variables and η is the independent variable
And the boundary conditions are as follows:
f=0, f'= delta, t=1, p=1 at y=0
f'-->0, t-->0, p-->0 as y----> infinity
So solving these equations numerically I have used 'bvp4c' solver
So converting these higher order equations to first order equations, I have let
f = y1, df/dη = y2, g = y3, t = y4, dt/dη = y5, p = y6, dp/dη = y7
So the first order equations are
y1' = y2,
y2' = {y3*(y3^2+ gamma^2)}/(y3^2+ lambda*gamma^2) ,
y3' = y2^2/3 (2/3)*y1*{y3*(y3^2+ gamma^2)/(y3^2+ lambda*gamma^2)} + Mny2,
y4' = y5,
y5' = (1/(1+Rd))*{(2*Pr*y1*y5)/3 + Nb*y5*y7 + Nt*y5^2} ,
y6' = y7,
y7' = (2*Le*y1*y7)/3 + {Nt/Nb*(1+Rd)}{(2*Pr*y1*y5)/3 + Nb*y5*y7 + Nt*y5^2}
I would like to know if my written code is correct and if I have got the correct plots
function sol= proj
clc;clf;clear;
global lambda gama Pr Rd Lew Nb Nt Mn m
gama=1;
Lew=1;
Nt=1;
Rd=1;
Pr=5;
Mn=1;
pp=[0.5 1 1.5];
qq=[0.2 0.5 0.9];
%figure(1)
%plot(2,1);hold on
options=bvpset('stats','on','RelTol',1e-9);
m=linspace(0,10);
solinit= bvpinit(m,[1,0,0,0,0,0,0]);
for i=1:numel(pp)
lambda=pp(i);
for i=1:numel(qq);
Nb=qq(i)
sol= bvp4c(@projfun,@projbc,solinit,options);
y1=deval(sol,0)
solinit= sol;
plot(sol.x,sol.y(6,:));hold on
end
end
end
function f= projfun(x,y)
global lambda gama Pr Rd Lew Nb Nt Mn
f= [y(2)
y(3)*(y(3)^2+gama^2)/(y(3)^2+lambda*gama^2)
y(2)^2/3-(2*y(1)*y(3)*(y(3)^2+gama^2))/(3*(y(3)^2+lambda*gama^2))+Mn*y(2)
y(5)
-(2*Pr*y(1)*y(5))/(3*(1+Rd)) - (Nb*y(5)*y(7))/(1+Rd) - (Nt*y(5)^2)/(1+Rd)
y(7)
-(2*Lew*y(1)*y(7))/3+ Nt*((2*Pr*y(1)*y(5))/(3*(1+Rd)) + (Nb*y(5)*y(7))/(1+Rd) + (Nt*y(5)^2)/(1+Rd))/Nb];
end
function res= projbc(ya,yb)
res= [ya(1); ya(2)-1; ya(4)-1.0; ya(6)-1.0; yb(2); yb(4); yb(6)];
end
  2 Comments
Walter Roberson
Walter Roberson on 9 Apr 2018
If you have the Symbolic Toolbox, then I recommend that you look at odeFunction and go through the series of steps shown in the documentation to convert an ode right through to a function handle that can be used with the ode* routines.
Mayokun  Ojediran
Mayokun Ojediran on 3 Jul 2019
Hello, I am trying to adapt your code to solve the following equations:
(2n+1/2(n+1))f*theta' = (1/Bo^(2/n+1))*theta''
1/2*f'^2 +(2n+1/2(n+1))*f*f'' = -(f''^(n-1)*f'' + f''^(n-1)*f''') + theta
'f' and 'theta' are the dependent variables and η is the independent variable and Bo is a constant
f= f' = 0 , theta=1 at y=0
f'-->0, theta-->0 as y----> infinity
And the boundary conditions are as follows:
Converting to First order equations,
theta = y1, dtheta/dη = y2, f = y3, df/dη = y4, d^2f/d\η^2 = y5
The first order equations are
y(2);
Bo^(2/(n+1))*((2*n+1)/2*(n+1))*((2*n+1)/2*(n+1))*y(3)*y(2);
y(4);
y(5);
(-y(4)^2*n+2*y(3)*y(5)*n+2*y(1)*n-y(4)^2+y(3)*y(5)+2*y(1))/(2*y(5)^(n-1)*n*(n+1));
I have tried adapting your code but not completely sure how to implement the boundary conditions, please help.
function sol= proj
clc;clf;clear;
global n Bo
n = 0.4;
Bo = 0.0003548133892;
pp=[0.5 1 1.5];
qq=[0.2 0.5 0.9];
%figure(1)
%plot(2,1);hold on
options=bvpset('stats','on','RelTol',1e-9);
m=linspace(0,10);
solinit= bvpinit(m,[1,0,0,0,0,0,0]);
for i=1:numel(pp)
lambda=pp(i);
for i=1:numel(qq);
Nb=qq(i)
sol= bvp4c(@projfun,@projbc,solinit,options);
y1=deval(sol,0)
solinit= sol;
plot(sol.x,sol.y(4,:));hold on
end
end
end
function f= projfun(x,y)
global lambda gama Pr Rd Lew Nb Nt Mn
f= [y(2)
Bo^(2/(n+1))*((2*n+1)/2*(n+1))*((2*n+1)/2*(n+1))*y(3)*y(2);
y(4)
y(5)
(-y(4)^2*n+2*y(3)*y(5)*n+2*y(1)*n-y(4)^2+y(3)*y(5)+2*y(1))/(2*y(5)^(n-1)*n*(n+1))];
end
function res= projbc(ya,yb)
res= [ya(1); ya(2)-1; ya(4)-1.0; ya(6)-1.0; yb(2); yb(4); yb(6)];
end

Sign in to comment.

Answers (0)

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!