How can I plot in the same coordinate system this two images that the execution of the two codes below gives?
    5 views (last 30 days)
  
       Show older comments
    
function h = circle(x,y,r) % r is 30 hold on th = 0:pi/50:2*pi; xunit = r * cos(th) + x; yunit = r * sin(th) + y; h = plot(xunit, yunit); hold off
AND
R = 15 ; Delta = 3; xVertex = R * cos((0:6)*pi/3 ); yVertex = R * sin((0:6)*pi/3 ); xVertex = [xVertex , xVertex(1 )]; yVertex = [yVertex , yVertex(1 )]; requiredPoints = 20 ; plot(xVertex, yVertex, 'b+-', 'LineWidth', 3 ); grid on ; numPointsIn = 1 ; while numPointsIn < requiredPoints testx = 2 * R * rand(1) - R ; testy = 2 * R * rand(1) - R ; if inpolygon(testx, testy, xVertex, yVertex ) x(numPointsIn) = testx ; y(numPointsIn) = testy ;
   D = x - R
   if D <= Delta
       Sc = x  
   end
numPointsIn = numPointsIn + 1 ; 
end 
end 
hold on ; 
plot(x,y,'r+', 'MarkerSize', 10, 'LineWidth', 2 ); 
yAngle = atan2(y, x) + pi
x
0 Comments
Answers (1)
  RobF
      
 on 23 Jan 2018
        
      Edited: RobF
      
 on 23 Jan 2018
  
      You might want to delete/comment out the hold off statement and try the following:
% circle(1, 2, 3)
x=1;
y=2;
r=3;
% function h = circle(x,y,r)
% r is 30
hold on
th = 0:pi/50:2*pi;
xunit = r * cos(th) + x;
yunit = r * sin(th) + y;
h = plot(xunit, yunit);
 % hold off
R = 15 ;
Delta = 3;
xVertex = R * cos((0:6)*pi/3 );
yVertex = R * sin((0:6)*pi/3 );
xVertex = [xVertex , xVertex(1 )];
yVertex = [yVertex , yVertex(1 )];
requiredPoints = 20;
plot(xVertex, yVertex, 'b+-', 'LineWidth', 3 );
grid on;
numPointsIn = 1;
while numPointsIn < requiredPoints
    testx = 2 * R * rand(1) - R ;
    testy = 2 * R * rand(1) - R ;
    if inpolygon(testx, testy, xVertex, yVertex )
        x(numPointsIn) = testx ;
        y(numPointsIn) = testy ;
        D = x - R
        if D <= Delta
            Sc = x
        end
    end
    numPointsIn = numPointsIn + 1 ; 
end
hold on; 
plot(x,y,'r+', 'MarkerSize', 10, 'LineWidth', 2 ); 
yAngle = atan2(y, x) + pi;
% end
See Also
Categories
				Find more on 2-D and 3-D Plots in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!