離散化した伝達関数のボード線図を書くには
28 views (last 30 days)
Show older comments
連続時間領域の伝達関数を離散化したもののボード線図を書きたいのですが,bodeコマンドで書けるのでしょうか?写真に書いてある伝達関数をサンプリング周期1.4e-05sで離散化したところ,写真のようになりました.ナイキスト周波数付近で大きな違いが出ていますが,これはこうなるものなのでしょうか?ちなみにこれは別にいいのですが,連続時間領域のボード線図の書き方はs=jωを代入して,ゲイン項と位相項に分ければ書けると理解していますが,離散時間領域の場合はどうやって書くのか分かりません.よろしくお願いします.
0 Comments
Accepted Answer
Yoko
on 10 Jan 2018
c2d で離散化する場合、離散化する手法によって周波数応答が変わります。 周波数応答で連続に近い応答を得るのが目的ならば、'matched' オプションの方が良いかと思います。
Hd = c2d(Gc,1.4e-05,'matched')
離散の場合は、z = exp(jωT) を代入して計算します。
3 Comments
Yoko
on 17 Jan 2018
bode 関数の仕様により、離散の伝達関数はナイキスト周波数までの表示となっております。説明が、ドキュメントページの 'アルゴリズム'の項目に記載があります。
離散システムは通常ナイキスト周波数までを有効帯域としますので、サンプリング定理に基づき、通常ナイキスト周波数までを表示するようにしています。なお、ナイキスト周波数を中心に、周波数応答は対称(複素共役の関係)になります。
More Answers (0)
See Also
Categories
Find more on 時間領域および周波数領域解析 in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!