I am using MATLAB for CNN training. I have a data set of 27,000 images and angles corresponding to that images. My sample code is : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
layers = [imageInputLayer([32 32 1])
convolution2dLayer(5,50)
reluLayer()
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(size(categories(trainAngle)))
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', 'MaxEpochs', 50,'InitialLearnRate', 0.0003);
convnet = trainNetwork(trainZ, trainAngle, layers,options);
% trainZ is my 4D matrix of images and trainAngle is 2D array of angles corresponding to images!
resultant_Train = classify(convnet,trainZ); %Training data
resultant_Valid = classify(convnet,validZ); %Validation data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
My training accuracy is 70%
but test accuracy is only 2%;
I am completely blank what to do next. Do you have any suggestion? How can I improve my test accuracy?
Can someone also suggest how can i use adam in place of sgdm in optimizer?
1 Comment
Direct link to this comment
https://se.mathworks.com/matlabcentral/answers/345435-how-to-increase-the-training-and-testing-accuracy-in-cnn-training#comment_463164
Direct link to this comment
https://se.mathworks.com/matlabcentral/answers/345435-how-to-increase-the-training-and-testing-accuracy-in-cnn-training#comment_463164
Sign in to comment.