How to compute softmax and its gradient?
10 views (last 30 days)
Show older comments
I am creating a simple two layer neural network where the activation function of the output layer will be softmax.
I have this for creating softmax in a numerically stable way
function g = softmax(z)
dim = 1;
s = ones(1, ndims(z));
s(dim) = size(z, dim);
maxz = max(z, [], dim);
expz = exp(z-repmat(maxz, s));
g = expz ./ repmat(sum(expz, dim), s);
z is a matrix that contains all of the data calculated by the previous layer one row at a time.
In order to compute the derivative of this though I will need to use the Kronecker delta but I am not sure how to do it.
Can someone provide me with a vectorized implementation for computing it in Matlab?
1 Comment
usama pervaiz
on 22 Nov 2017
You can find here how to compute softmax of a matrix and its gradient http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/
Answers (0)
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!