AIC in a Gaussian Mixture Regression
4 views (last 30 days)
Show older comments
Hello everybody, I am trying to fit a gaussian mixture model to a set of predictor variables. I'm not using the built-in functions of matlab. I have six predictor variables to one response value. Each predictor variable is described by 100 observations I want to determine the number of Guassians (clusters) to fit the model. My script uses first an initialization using K-means and then the EM algorithm to calculate the model parameters ( means, covariance and mixing proportions).
How can I calculate the AIC to determine the numbers of Gaussians that bettwer fit my model?
Joaquim
1 Comment
Sujit Dahal
on 17 Jan 2020
Hello Joaquim,
Did you calculate the AIC for your problem. I also have similar problem to yours. If you have the solution could you please provide it.
Thank you
Sujit
Answers (1)
Adam Danz
on 17 Jan 2020
% RSS: Vector; residual sum of squares between your data and the fit for each model
% N: number of data points
% Np: number of model parameters (must be same size as RSS)
AIC=N*(log(RSS/N)+1)+2*(Np+1);
AICc=AIC+2*(Np+1).*(Np+2)./(N-Np-2);
Based on
0 Comments
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!