Clear Filters
Clear Filters

when i tried this program getting the error as Subscripted assignment dimension mismatch Error in ==> mrczf at 79 EbN0EffSim(ii,jj) = (mean(abs(yHat))+simBer) ;.

4 views (last 30 days)
clear N = 10^6; % number of bits or symbols Eb_N0_dB = [0:25]; % multiple Eb/N0 values nTx = 2; %number of transmitters nRx = 2; %number of receivers for ii = 1:length(Eb_N0_dB)
% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0
sMod1 = kron(s,ones(nRx,1)); %
sMod1 = reshape(sMod1,[nRx,nTx,N/nTx]); % grouping in [nRx,nTx,N/NTx ] matrix
%conj vi du 1 ham 1+j se tra lai 1-j va nguoc lai
%reshape: sap xep lai cac phan tu cua 1 ma tran 3x4 thang 1 ma tran 2x6
%voi thu tu uu tien giu nguyen cot.
h1 = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; % Rayleigh channel
n1 = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; % white gaussian noise, 0dB variance
% Channel and noise Noise addition
y1 = squeeze(sum(h1.*sMod1,2)) + 10^(-Eb_N0_dB(ii)/20)*n1;
%B = squeeze(A) returns an array B with the same elements as A, but
%with all singleton dimensions removed.
% Receiver
% Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H
% H^H*H is of dimension [nTx x nTx]. In this case [2 x 2]
% Inverse of a [2x2] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
h1Cof = zeros(2,2,N/nTx) ;
h1Cof(1,1,:) = sum(h1(:,2,:).*conj(h1(:,2,:)),1); % d term
h1Cof(2,2,:) = sum(h1(:,1,:).*conj(h1(:,1,:)),1); % a term
h1Cof(2,1,:) = -sum(h1(:,2,:).*conj(h1(:,1,:)),1); % c term
h1Cof(1,2,:) = -sum(h1(:,1,:).*conj(h1(:,2,:)),1); % b term
h1Den = ((h1Cof(1,1,:).*h1Cof(2,2,:)) - (h1Cof(1,2,:).*h1Cof(2,1,:))); % ad-bc term
h1Den = reshape(kron(reshape(h1Den,1,N/nTx),ones(2,2)),2,2,N/nTx); % formatting for division
h1Inv = h1Cof./h1Den; % inv(H^H*H)
h1Mod = reshape(conj(h1),nRx,N); % H^H operation
y1Mod1 = kron(y1,ones(1,2)); % formatting the received symbol for equalization
y1Mod1 = sum(h1Mod.*y1Mod1,1); % H^H * y
y1Mod1 = kron(reshape(y1Mod1,2,N/nTx),ones(1,2)); % formatting
y1Hat1 = sum(reshape(h1Inv,2,N).*y1Mod1,1); % inv(H^H*H)*H^H*y
% receiver - hard decision decoding
ipHat1 = real(y1Hat1)>0;
% counting the errors
nErr(ii) = size(find([ip- ipHat1]),2);
end
simBer = nErr/N; % simulated ber
for jj = 1:length(nRx)
for ii = 1:length(Eb_N0_dB)
n = 1/sqrt(2)*[randn(nRx(jj),N) + j*randn(nRx(jj),N)]; % white gaussian noise, 0dB variance
h = 1/sqrt(2)*[randn(nRx(jj),N) + j*randn(nRx(jj),N)]; % Rayleigh channel
% Channel and noise Noise addition
sD = kron(ones(nRx(jj),1),s);%sD = 1;
y = h.*sD + 10^(-Eb_N0_dB(ii)/20)*n;
% maximal ratio combining
yHat = sum(conj(h).*y,1);
% effective SNR
EbN0EffSim(ii,jj) = (mean(abs(yHat))+simBer) ;
end
end
%EbN0Lin = 10.^(Eb_N0_dB/10); theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2); theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p));
close all figure semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2); hold on semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2); semilogy(nRx, EbN0EffSim,'mo-','LineWidth',2); axis([0 25 10^-5 0.5]) grid on legend('theory (nTx=1,nRx=1)', 'theory (nTx=1,nRx=2, MRC)', 'sim (nTx=2, nRx=2, ZF)'); xlabel('Average Eb/No,dB'); ylabel('Bit Error Rate'); title('BER for BPSK modulation with 2x2 MIMO and ZF equalizer (Rayleigh channel)');

Answers (1)

Walter Roberson
Walter Roberson on 28 Jan 2017
simerr is a vector. I did not examine whether yhat is a vector. You add something to simerr so the results have to be a vector. You try to store that complete vector in the single numeric array position you designated on the left hand side of the assignment

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!