Problem with using ode45 event option
1 view (last 30 days)
Show older comments
I am trying to simulate a rigid body motion and want to terminate the solver when a particular condition i.e. abs(f_max)=abs(f_req) is satisfied. My main code is:
jw=7e-7;
m=0.0045;
lg=0.015;
g=9.81;
k=0.012;
lm=0.01;
h=9.22e-3;
u=0.3;
M=0.003;
tspan = 0:1/2000:0.15;
theta=pi*30/180;
omega=0;
alpha=(m*g*lg*cos(theta)-k*theta)/(jw+m*lg^2);
Y0=[theta;omega;alpha;0]
options = odeset('RelTol',1e-2,'AbsTol',1e-2,'Events',@(t,y) fric_event(t,y,m,M,g,lg,lm,h,k,u));
[T,Y,te,qe,ie] = ode45(@(t,y) type1(t,y,jw,m,lg,g,k),tspan,Y0,options);
N=(k*Y(:,1)+m*(lm+lg*cos(Y(:,1))).*(g-(Y(:,3))*lg)+m*lg*lm*(Y(:,2).*Y(:,2)).*sin(Y(:,1)))/h;
f_max=u*N;
f_req=((m+M)*g-m*lg*(Y(:,3).*cos(Y(:,1))-Y(:,1).*Y(:,2).*Y(:,2)))/2;
figure
plot(T,abs(f_req),T,abs(f_max),T,0)
legend('abs(f_r)','abs(f_m)')
type 1 function is:
function dy=type1(t,y,jw,m,lg,g,k)
dy=zeros(4,1);
dy(1)=y(2);
dy(2)=(m*g*lg*cos(y(1))-k*y(1))/(jw+m*lg^2);
dy(3)=-(m*g*lg*sin(y(1)).*y(2)+k*y(2))/(jw+m*lg^2);
dy(4)=0;
end
and my events function is
function [value,isterminal,direction] = fric_event(t,y,m,M,g,lg,lm,h,k,u)
f_req=((m+M)*g-m*lg*(y(3).*cos(y(1))-y(1).*y(2).*y(2)))/2;
N=(k*y(1)+m*(lm+lg*cos(y(1))).*(g-(y(3))*lg)+m*lg*lm*(y(2).*y(2)).*sin(y(1)))/h;
f_max=u*N;
value = abs(f_req)-abs(f_max); % Detect zero of event functions
isterminal = 1; % Stop the integration
direction = 0; % Direction
end
After running my code I am getting the following graph of abs(f_max) and abs(f_req) vs time
From the figure it is evident that the condition is satisfied several times but event function is not triggered even once and hence the solution is not terminated. I would like to know where I am going wrong.
Any suggestions would be appreciated. Thank you!
0 Comments
Accepted Answer
Mischa Kim
on 1 Nov 2016
Edited: Mischa Kim
on 1 Nov 2016
Sourav, you need to improve the accuracy of the integration. E.g. this seems to work:
options = odeset('RelTol',1e-7,'AbsTol',1e-12,'Events',@(t,y) fric_event(t,y,m,M,g,lg,lm,h,k,u));
0 Comments
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!