Fixed Point Iteration technique for nonLinear ODEs
11 views (last 30 days)
Show older comments
I am trying to solve u''=(u-4)./(5-u)-exp(3*x)
Is this code correct
%% Housekeeping clc clear all format compact n = 100; tol = 10^-4; x = linspace(0,1,n)'; a = linspace(0.1,1,10)'; b = ones(10,1)'; S=(n-1)^-1*(gallery('tridiag',n,-1,2,-1)); %One Line Generation of Sparse Matrix A.
%% Anonymous Functions kappa=10^-4 ;
A=@(x,u) (u-4)./(5-u)-exp(3*x) ; B=@(x,u) -(u+kappa).^-1.5-x.*exp(4*x); C=@(x,u) -(u+kappa).^-7-x.*exp(4*x); %% The Fixed Point Method A format compact d = 1; i = 0; u = zeros(n,1);
while d>tol && i<2 unew = -(S\((A(x,u)))); d1=max(abs(u-unew)); d2=(abs(S*unew+A(x,unew))); d=max(abs(d1-d2)); u=unew; i=i+1; end fpAi=i fpAd=d
figure; % plot (x,u,'-r*'); plot (x,u); title('Fixed point method for Equation A') xlabel('X axis'); ylabel('u(x)');
0 Comments
Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!