Solving non-linear equations - not enough input arguments
15 views (last 30 days)
Show older comments
Hello,
I have some data that I approximated with a polynomial of degree 9, p(x), and I have a non-linear function (with unknown coefficients that is supposed to fit the data). I found a Taylor series of that function, ts(x). In order to find the coefficients, I would like to solve the system p(x) = ts(x).
function f = ts1( x )
% Taylor series expansion
A = 70.94;
B = x(1);
C = x(2);
D = x(3);
E = x(4);
%system of equations
f(1) = B*C*D - 1161; % x^1
f(2) = -D*(C*((B^3*E)/3 + B^3/3) + (B^3*C^3)/6) - 22.21; % x^3
f(3) = D*(C*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)) + (B^2*C^3*((B^3*E)/3 + B^3/3))/6 + B*C*((B^4*C^4)/120 + (B*C^2*((B^3*E)/3 + B^3/3))/3)) + 0.2839; % x^5
f(4) = -D*(C*(B*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + B^2*((2*B^4*E)/15 + B^4/7)) + (22*B^7*E)/105 + (B^3*E*((2*B^4*E)/9 + B^4/5))/3) +...
C*((B^3*E)/3 + B^3/3)*((B^4*C^4)/120 + (B*C^2*((B^3*E)/3 + B^3/3))/3) + (B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/6 + B*C*((B^3*C^4*((B^3*E)/3 + ...
B^3/3))/60 + B^2*C^2*((B^4*C^4)/5040 + (B*C^2*((B^3*E)/3 + B^3/3))/60) + (4*B*C^3*((B^3*E)/3 + B^3/3)^2 + 8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(24*B*C))) - 0.001837; % x^7
f(5) = D*(C*((10*B^9*E)/63 + B*(((4*B^9*E^2)/5 + (12*B^9*E)/7)/(18*B) + B^2*((2*B^6*E)/21 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(20*B) + B^2*((2*B^4*E)/21 + B^4/9)) + (B*((4*B^7*E^2)/9 + (8*B^7*E)/5))/20 +...
(2*B^4*E*((2*B^4*E)/15 + B^4/7))/3) + (B^3*E*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + B^2*((2*B^4*E)/15 + B^4/7)))/3 + (B^5*E*((2*B^4*E)/9 + B^4/5))/5) + B*C*((B*C*(4*B*C^3*((B^3*E)/3 + ...
B^3/3)^2 + 8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5))))/480 + (12*B^2*C^3*(B*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + B^2*((2*B^4*E)/15 + B^4/7)) + (22*B^7*E)/105 + (B^3*E*((2*B^4*E)/9 + B^4/5))/3) + ...
12*B*C^3*((B^3*E)/3 + B^3/3)*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(36*B*C) + B^2*C^2*((B^3*C^4*((B^3*E)/3 + B^3/3))/2520 + B^2*C^2*((B^4*C^4)/362880 + (B*C^2*((B^3*E)/3 + B^3/3))/2520) + (4*B*C^3*((B^3*E)/3 + B^3/3)^2 + ...
8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(480*B*C)) + 2*B*C^2*((B^3*E)/3 + B^3/3)*((B^4*C^4)/5040 + (B*C^2*((B^3*E)/3 + B^3/3))/60)) + C*((B^3*E)/3 + B^3/3)*((B^3*C^4*((B^3*E)/3 + B^3/3))/60 + ...
B^2*C^2*((B^4*C^4)/5040 + (B*C^2*((B^3*E)/3 + B^3/3))/60) + (4*B*C^3*((B^3*E)/3 + B^3/3)^2 + 8*B^2*C^3*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5)))/(24*B*C)) + (B^2*C^3*(B*((2*B^6*E)/15 + ((4*B^7*E^2)/9 + (8*B^7*E)/5)/(12*B) + ...
B^2*((2*B^4*E)/15 + B^4/7)) + (22*B^7*E)/105 + (B^3*E*((2*B^4*E)/9 + B^4/5))/3))/6 + C*((B^4*C^4)/120 + (B*C^2*((B^3*E)/3 + B^3/3))/3)*((14*B^5*E)/45 + B*((2*B^4*E)/9 + B^4/5))) + 4.552e-06; % x^9
end
My main looks like this:
x0 = [-0.0095, 0.0014, 4.0000, 0.0165];
f = solve(@ts1, x0, options)
and the error is:
Error using ts1 (line 5)
Not enough input arguments.
Error in sym>funchandle2ref (line 1211)
S = sym(x());
Error in sym>tomupad (line 1114)
x = funchandle2ref(x);
Error in sym (line 151)
S.s = tomupad(x);
Error in solve>getEqns (line 410)
a = formula(sym(a));
Error in solve (line 227)
[eqns,vars,options] = getEqns(varargin{:});
1 Comment
Accepted Answer
Star Strider
on 24 May 2016
The way you’ve written your code, I believe you want the fsolve function instead.
Try this:
f = fsolve(@ts1, x0, options)
1 Comment
John D'Errico
on 24 May 2016
Definitely the case. Anyway, solve would surely fail to find a solution, though vpasolve might succeed.
More Answers (0)
See Also
Categories
Find more on Communications Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!