Cluster-Robust Standard Errors in Maximum Likelihood Estimation
10 views (last 30 days)
Show older comments
I am estimating a model on pooled panel data by Maximum Likelihood using fminunc. I want to compute the cluster-robust standard errors after the estimation. This is a sandwich estimator, where the "bread" is given by the inverse Hessian and the "meat" involves the contribution of the k-th group to the score vector. I get the Hessian straight out of the fminunc algorithm.
But: How do I use the fminunc output to compute the contribution of the k-th group to the score vector?
Or, how would I alternatively compute the cluster-robust standard errors after minimizing the minus log-Likelihood function?
0 Comments
Answers (0)
See Also
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!