Double Integral with Varying Limits
3 views (last 30 days)
Show older comments
syms x y
t=(30:1:90);
nu=0.3;
ms=1+nu;
E=2.07*10^11;
G=8.28*10^10;
R=0.0185;
Ep=E/(1-nu^2);
k=(6*(1+nu))/(7+6*nu);
A=pi*R^2;
L=0.254;
sigma=1;
I=(1/4)*pi*R^4;
mu=R*x;
mup=2*R*(1-sigma+x);
beta=R*y;
for i=1:length(t)
F1=(sqrt(((2*mup)/(pi*mu))*tan((pi*mu)/(2*mup))))*((0.752+2.02*(mu/mup)+0.37*(1-sin((pi*mu)/(2*mup)))^3)/(cos((pi*mu)/(2*mup))));
Flll=sqrt(((2*mup)/(pi*mu))*tan((pi*mu)/(2*mup)));
x_s=(((0.5*L)/R)+y*cosd(t(i)));
f11=matlabFunction(32*(x_s.^2)*(y^2)*x*(((sind(t(i))).^6)*F1^2+ms*((sind(t(i))).^4).*((cosd(t(i))).^2)*Flll^2)+...
16*x_s*k*y*x*((sind(t(i)).^3).*sind(2*t(i))*F1^2+ms*(sind(t(i)).^2).*cosd(t(i)).*cosd(2*t(i))*Flll^2)+...
2*k^2*x*(F1^2*(sind(2*t(i)).^2)+ms*(cosd(2*t(i))).^2*Flll^2));
xmin=0;
xmax=(sqrt(1-y^2*(sind(t(i))).^2))-1+sigma;
ymax=(sqrt(1-(1-sigma)^2))/(sind(t(i)));
ymin=-ymax;
Q(i)=(L)/(k*G*A)+(L^3)/(3*E*I)+1/(Ep*pi*R)*int(int(f11,x,xmin,xmax),y,ymin,ymax); % double integral
end
plot(t,Q,'g','LineWidth',3);grid on;
title('Flexibility Coefficient');
xlabel('theta');
ylabel('f11');
The above code that I write it, but when I run for sigma=0.5 don't response.
How to plot the solution for sigma=0:0.01:1 and t=20:1:180 ?
best regards
0 Comments
Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!