.mu and .su

3 views (last 30 days)
Jon Camilleri
Jon Camilleri on 23 Nov 2015
Commented: Walter Roberson on 23 Nov 2015
What do lines 41-42 mean?
% ICS5110 - Applied Machine Learning
% University of Malta
% Lecturer: Dr. George Azzopardi
% Date: 27 October, 2015
function accuracy = NaiveBayesIris(L2norm)
load('irisData.mat');
load('irisLabels.mat');
% Create a random permutation
if exist('randpermlist.mat')
load('randpermlist.mat');
else
randpermlist = randperm(numel(irisLabels));
save randpermlist randpermlist;
end
if L2norm
irisData = normr(irisData);
end
% Split data set into 50% training and 50% testing
ntraining = floor(0.5*numel(irisLabels));
trainingData = irisData(randpermlist(1:ntraining),:);
trainingLabels = irisLabels(randpermlist(1:ntraining));
testingData = irisData(randpermlist(ntraining+1:end),:);
testingLabels = irisLabels(randpermlist(ntraining+1:end));
% Prior class probabilities
uniqueClasses = unique(trainingLabels);
[classidx,classlbl] = grp2idx(trainingLabels);
h = hist(classidx,numel(uniqueClasses));
prior = h./sum(h);
% Likelihood
likelihood.mu = zeros(numel(uniqueClasses),size(trainingData,2)); _/% explanation required_
likelihood.su = zeros(numel(uniqueClasses),size(trthainingData,2)); /% explanation required
for i = 1:numel(uniqueClasses)
idx = find(classidx == i);
likelihood.mu(i,:) = mean(trainingData(idx,:));
likelihood.su(i,:) = std(trainingData(idx,:));
end
% Classification
for i = 1:size(testingData,1)
for j = 1:numel(uniqueClasses)
% Guassian Function Kernel
squaredDifference = (testingData(i,:) - likelihood.mu(j,:)).^2;
normFactor = 1./(sqrt(2*pi)*likelihood.su(j,:));
likelihood.prob = normFactor .* exp(-squaredDifference/(2.*(likelihood.su(j,:).^2)));
%posterior(j) = prod(likelihood.prob) * prior(j);
posterior(j) = sum(log(likelihood.prob)) + log(prior(j));
end
[mx,mxind] = max(posterior);
predictedLabel(i) = classlbl(mxind);
end
accuracy = sum(strcmp(predictedLabel',testingLabels))/numel(testingLabels);

Accepted Answer

Walter Roberson
Walter Roberson on 23 Nov 2015
  2 Comments
Jon Camilleri
Jon Camilleri on 23 Nov 2015
I did not quite find the answer to my question as yet but thanks.
Walter Roberson
Walter Roberson on 23 Nov 2015
The mu are means of each class and the su are standard deviations of each class.

Sign in to comment.

More Answers (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!