how to solve this equation?
1 view (last 30 days)
Show older comments
Ankit agrawal
on 6 Sep 2015
Edited: Mohammad Abouali
on 6 Sep 2015
(1+cost)(tcost-sint)=2K(sint^2), where k is a constant
0 Comments
Accepted Answer
Mohammad Abouali
on 6 Sep 2015
Edited: Mohammad Abouali
on 6 Sep 2015
well a quick look at the equation, t=0 is always the solution regardless of the value of K.
However, if you want to solve these numerically you can choose an approach like below:
K=2;
fun=@(t) (1+cos(t)).*(t.*cos(t)-sin(t))-2*K*(sin(t).^2);
% or the following. Not sure which one you want.
% fun=@(t) (1+cos(t)).*(t.*cos(t)-sin(t))-2*K*(sin(t.^2));
Options=optimset(@fsolve);
Options.TolFun=1e-10;
[x,fval,exitflag,output] = fsolve(fun,1,Options)
x =
1.4560e-04
fval =
-8.4804e-08
exitflag =
1
output =
iterations: 12
funcCount: 26
algorithm: 'trust-region-dogleg'
firstorderopt: 9.8791e-11
message: 'Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the selected valu...'
2 Comments
Mohammad Abouali
on 6 Sep 2015
Edited: Mohammad Abouali
on 6 Sep 2015
Sure you can.
K=2;
fun1=@(t) (1+cos(t)).*(t.*cos(t)-sin(t));
fun2=@(t) 2*K*(sin(t.^2));
ezplot(fun1,[1,pi])
hold on
h=ezplot(fun2,[1,pi]);
set(h,'Color','r')
legend('(1+cost)(tcost-sint)','2K(sint^2)')
where fun is your function defined in previous code.
BTW, if you are interested in the solution between the [1,pi] you can use fminbnd function as follow:
fminbnd(fun,1,pi)
ans =
1.2915
fminbnd(fun,1.3,pi)
ans =
2.7949
More Answers (0)
See Also
Categories
Find more on Matrix Computations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!