Invalid training data. Predictors and responses must have the same number of observations.

18 views (last 30 days)
I wan to train a LSTM.
But I get Error:
Error using trainNetwork (line 191)
Invalid training data. Predictors and responses must have the same number of observations.
layers = [ ...
sequenceInputLayer(6)
lstmLayer(120,'OutputMode','last')
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
options = trainingOptions('adam', ...
'MaxEpochs',20, ...
'MiniBatchSize',32, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Shuffle','every-epoch', ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XTrain, YTrain, layers, options);

Accepted Answer

Matt J
Matt J on 28 Aug 2025 at 19:41
Edited: Matt J on 28 Aug 2025 at 19:55
Your XTrain shouldn't be a 100x6 cell. It should be a 100x1 cell where each XTrain{i} is a matrix with 6 rows. Example,
layers = [ ...
sequenceInputLayer(6)
lstmLayer(120,'OutputMode','last')
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
for i=1:100
XTrain{i,1} = rand(6,randi(20));
end
YTrain = categorical(randi([0,1],100,1));
whos YTrain
Name Size Bytes Class Attributes YTrain 100x1 346 categorical
XTrain,
XTrain = 100×1 cell array
{6×20 double} {6×16 double} {6×11 double} {6×2 double} {6×18 double} {6×8 double} {6×13 double} {6×17 double} {6×19 double} {6×6 double} {6×1 double} {6×1 double} {6×17 double} {6×10 double} {6×5 double} {6×4 double}
options = trainingOptions('adam', ...
'MaxEpochs',20, ...
'MiniBatchSize',32, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'Shuffle','every-epoch', ...
'Verbose',1, ...
'Plots','none');
net = trainNetwork(XTrain, YTrain, layers, options)
Training on single CPU. |========================================================================================| | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning | | | | (hh:mm:ss) | Accuracy | Loss | Rate | |========================================================================================| | 1 | 1 | 00:00:00 | 46.88% | 0.7000 | 0.0050 | | 17 | 50 | 00:00:01 | 71.88% | 0.6504 | 0.0050 | | 20 | 60 | 00:00:01 | 53.12% | 0.6374 | 0.0050 | |========================================================================================| Training finished: Max epochs completed.
net =
SeriesNetwork with properties: Layers: [5×1 nnet.cnn.layer.Layer] InputNames: {'sequenceinput'} OutputNames: {'classoutput'}
  3 Comments
Bahadir
Bahadir on 28 Aug 2025 at 20:58
When ı try trainnet, I get the error.
Caused by:
Layer 'classoutput': Detected output layer. The network must not have output layers.
Matt J
Matt J on 28 Aug 2025 at 21:05
Edited: Matt J on 28 Aug 2025 at 21:34
The error is complaining that you have not removed the output layer (classificationLayer) from your layers array. Output layers do not belong in the network when training with trainnet, because the loss function is separately specified to trainnet using the lossFcn input parameter.

Sign in to comment.

More Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!