Alternative to ginput for finding curve intersections with unevenly spaced data in MATLAB

5 views (last 30 days)
Is there a better way to determine the intersection of two curves in MATLAB, other than using ginput, especially when the data points are unevenly spaced and do not include the exact intersection point? How can I handle cases where one of my datasets forms two angled lines joined together, rather than a smooth curve?

Accepted Answer

Matt J
Matt J on 8 Feb 2025
Edited: Matt J on 8 Feb 2025
Use fminbnd or fzero,
x=sort(rand(1,12)*5);
y1=[0,1,-1*x(3:end)+3+2*x(3)];
y2=2*x-3;
f=@(z) interp1(x,y1,z)-interp1(x,y2,z) ;
xmin=fzero(f,[min(x),max(x)]); ymin=interp1(x,y1,xmin); %intersection
h=plot(x,y1,'--gx', x,y2,'--b+',xmin,ymin,'ro');
h(3).MarkerFaceColor=h(3).Color; h(3).MarkerSize=8;
  1 Comment
Bo
Bo on 8 Feb 2025
Instead of using sort, I use [X,ia,ic] = unique(x); y1 = y1(ia); other than that, both fzero, and fminbnd works well, really appreciated!

Sign in to comment.

More Answers (2)

Alan Stevens
Alan Stevens on 8 Feb 2025
Create a function using interp1 for use with fzero. For example:
yfn = @(X,Y,x) interp1(X,Y,x);
X = [1,2,3,7,8,9];
Y1 = X;
Y2 = 15-X.^1.5;
x0 = 6;
xp = fzero(@(x0)fn(x0,X,Y1,Y2,yfn),x0);
disp(xp)
4.5710
yp = yfn(X,Y1,xp);
plot(X,Y1,'-o',X,Y2,'-+',xp,yp,'ks'),grid
xlabel('x'), ylabel('y')
function Z = fn(x,X,Y1,Y2,yfn)
Z = yfn(X,Y1,x)-yfn(X,Y2,x);
end

Star Strider
Star Strider on 8 Feb 2025
Edited: Star Strider on 9 Feb 2025
Another approach —
x = [linspace(0, 2.4) linspace(5.2, 7, 8)].'*1E-3;
y1 = [x(x<=2.4E-3)*580/2.4E-3; 500*ones(size(x(x>2.5E-3)))];
y2 = x*580/2.4E-3 - 450;
idx = find(diff(sign(y2 - y1)))
idx = 100
idxrng = max(1,idx) : min(numel(x),idx+1)
idxrng = 1×2
100 101
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
y2(idxrng)-y1(idxrng)
ans = 2×1
-450.0000 306.6667
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
xi = interp1((y1(idxrng)-y2(idxrng)), x(idxrng), 0)
xi = 0.0041
yi = interp1(x, y1, xi)
yi = 532.4229
figure
plot(x, y1, '.-', DisplayName="y_1")
hold on
plot(x, y2, '.-', DisplayName="y_2")
plot(xi, yi, 'sr', DisplayName="Intersection")
hold off
grid
legend(Location='best')
This approach finds the approximate index of the two lines and then interpolates to find the intersection points of the lines.
EDIT — (9 Feb 2025 at 1:43)
Corrected code.
.

Categories

Find more on 2-D and 3-D Plots in Help Center and File Exchange

Products


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!