checkGradients, but the objective function has two inputs: x and xdata?

48 views (last 30 days)
I'm using lsqcurvefit with the following objective function and Jacobian:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = [1, (Q-Q0)./sqrt(r^2-(Q0-Q).^2), r./sqrt(r^2-(Q0-Q).^2)];
end
end
I'd like to use checkGradients to verify if the Jacobian is correct. However, all of the examples in the documentation just have objective functions with one input, the parameters 'x'. Whereas my function semiCircle has two inputs: the parameters 'p' and the xdata 'Q'. Is there a way to use checkGradients for such a function?

Accepted Answer

Torsten
Torsten on 14 Nov 2024 at 10:31
valid = checkGradients(@(p)semiCircle(p, Q),p0)
  10 Comments
Benjamin Pepper
Benjamin Pepper on 21 Nov 2024 at 11:39
Edited: Torsten on 21 Nov 2024 at 21:30
I reached my daily uploads limit, so I'll just put the functions here:
load('data.mat')
Vb_ll_rms = 690;
% Inital guess
p10 = 5e6;
p20 = 2.5e7;
p30 = 3e7;
p0 = [p10, p20, p30];
[Rls, Xls, Vgls, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vb_ll_rms)
Rls = 0.0024
Xls = 0.0238
Vgls = 689.9365
gradientCheck = logical
1
function [R, X, Vg, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vo)
% Box constraints
p1_ub = min(P);
p2_lb = max(Q);
p3_lb = max(Q) - min(Q);
lb = [0, p2_lb, p3_lb];
ub = [p1_ub, inf, inf];
% Linear constraints
A = [0, 1, -1];
b = min(Q);
gradientCheck = checkGradients(@(p)semiCircle(p,Q),p0);
options = optimoptions('lsqcurvefit','Display','off','SpecifyObjectiveGradient',true);
p = lsqcurvefit(@semiCircle, p0, Q, P, lb, ub, A, b, [], [], [], options);
P0 = p(1);
Q0 = p(2);
r = p(3);
R = P0/(P0^2 + Q0^2)*Vo^2;
X = Q0/(P0^2 + Q0^2)*Vo^2;
Vg = sqrt(r^2/(P0^2 + Q0^2)*Vo^2);
end
And the other one:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = zeros(length(Q), length(p));
for i = 1:length(Q)
jacF(i,:) = [1, (Q(i)-Q0)/sqrt(r^2-(Q0-Q(i))^2), r/sqrt(r^2-(Q0-Q(i))^2)];
end
end
end
Torsten
Torsten on 21 Nov 2024 at 21:34
As you said: the code works fine with R2024b.
But note that the call to "lsqcurvefit" has changed in R2023a to the actual call that you use in the code. So if your desktop MATLAB version is older than R2023a, linear constraints (A,b) are not yet accepted.

Sign in to comment.

More Answers (0)

Categories

Find more on Programming in Help Center and File Exchange

Products


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!