Site Response Analysis - FFT
40 views (last 30 days)
Show older comments
Hi,
When I do site response analysis, I make a fourier transform of an earthquake record and then multiply it with an magnification function and get an inverse fourier transform, I get a symmetrical and more cramped time record. What is the problem, how can I fix it. The code is as follows. Thanks.
% Earthquake Data Process
clear all;
dt = 0.005; % Zaman adımı
g = 9.81; % Yerçekimi ivmesi (m/s^2)
data5 = dlmread('Gilroy_No1.txt', '', 4, 0);
data5 = data5';
data = data5(:);
acc = data; % 'g' cinsinden normalize etme işlemi iptal edildi
t = 0.0:dt:dt*(length(data)-1);
% Hız ve yer değiştirme hesaplama
vel = cumsum(acc) * dt * g;
dis = cumsum(vel) * dt;
% Fourier Transform
Ts = dt;
Fs = 1 / Ts;
ACC = fft(acc, 2^nextpow2(numel(acc)));
N = numel(ACC);
f = (0:(N-1)) / N * Fs;
m_ACC = abs(ACC) / N;
m_ACC = m_ACC(1:N/2+1);
m_ACC(2:end-1) = 2 * m_ACC(2:end-1); % Tek taraflı spektrum
f = f(1:N/2+1); % Sadece pozitif frekanslar için eksen
% 25 Hz altındaki frekans bileşenlerini almak
indices = f <= 25;
f_limited = f(indices);
m_ACC_limited = m_ACC(indices);
% Zemin Parametreleri (Sert kaya üzerinde uniform, sönümsüz zemin)
h = 3.05; % Kalınlık (m)
Vs = 320; % Vs30 (m/s)
k = h / Vs;
% Amplifikasyon Fonksiyonu
y = 1 ./ abs(cos(k * 2 * pi * f_limited)); % Amplifikasyon Fonksiyonu
% Amplifikasyon Fonksiyonu ile çarpma
y = y';
N_FAS = y .* m_ACC_limited;
% Eksik frekans bileşenlerini sıfır ile doldurma
full_ACC = zeros(size(ACC));
full_ACC(1:length(N_FAS)) = N_FAS;
% Ters Fourier dönüşümü (tek taraflı spektrumdan dönüşüm)
reconstructed_acc = ifft(full_ACC, 'symmetric'); % 'symmetric' seçeneği simetri sağlar
reconstructed_acc= reconstructed_acc*length(reconstructed_acc);
% Hız ve yer değiştirme hesaplama
reconstructed_vel = cumsum(reconstructed_acc) * dt * g;
reconstructed_dis = cumsum(reconstructed_vel) * dt;
% Zaman eksenini yeniden oluşturma
t_reconstructed = (0:length(reconstructed_acc)-1) * dt;
% Sonuçları tek bir plot altında toplama (3x3 layout, transposed)
figure;
subplot(3,3,1), plot(t, acc, '-b');
xlabel('Time (sec)'), ylabel('Original Ground Acceleration (g)');
title('Original Ground Acceleration');
grid on;
subplot(3,3,4), plot(t, vel, '-b');
xlabel('Time (sec)'), ylabel('Velocity (m/sec)');
title('Velocity');
grid on;
subplot(3,3,7), plot(t, dis, '-b');
xlabel('Time (sec)'), ylabel('Displacement (m)');
title('Displacement');
grid on;
subplot(3,3,2), plot(f, m_ACC, '-b');
xlabel('Frequency (Hz)'), ylabel('Original Fourier Amplitude (g-s)');
title('Original Fourier Amplitude (g-s)');
xlim([0 25]);
grid on;
subplot(3,3,5), plot(f_limited, y, '-b');
xlabel('Frequency (Hz)'), ylabel('Amplification Function');
title('Amplification Function');
grid on;
subplot(3,3,8), plot(f_limited, N_FAS, '-b');
xlabel('Frequency (Hz)'), ylabel('Modified Fourier Amplitude (g-s)');
title('Modified Fourier Amplitude (g-s)');
grid on;
subplot(3,3,3), plot(t_reconstructed, reconstructed_acc, '-b');
xlabel('Time (sec)'), ylabel('Reconstructed Ground Acceleration (g)');
title('Reconstructed Ground Acceleration');
grid on;
subplot(3,3,6), plot(t_reconstructed, reconstructed_vel, '-b');
xlabel('Time (sec)'), ylabel('Reconstructed Velocity (m/sec)');
title('Reconstructed Velocity');
grid on;
subplot(3,3,9), plot(t_reconstructed, reconstructed_dis, '-b');
xlabel('Time (sec)'), ylabel('Reconstructed Displacement (m)');
title('Reconstructed Displacement');
grid on;
% Plotları düzenleme
sgtitle('Earthquake Data Analysis');
0 Comments
Answers (1)
Star Strider
on 29 Oct 2024 at 23:46
Just looking at your code (without having the data), one problem could be that your amplification function is defined only over the positive half of the Fourier trannsfomr result. I do not know if it is supposed to be symmetric (seismology is not an area of my expertise), howeever making it symmetric by using the appropriate version of flip and then concatenating that to the left side of the orignal vector could be the solution.
To illustrate —
f_limited = 0:0.5:25;
h = 3.05; % Kalınlık (m)
Vs = 320; % Vs30 (m/s)
k = h / Vs;
y = 1 ./ abs(cos(k * 2 * pi * f_limited)); % Amplifikasyon Fonksiyonu
figure
plot(f_limited, y)
f_limited2 = [-flip(f_limited) f_limited];
y2 = [flip(y) y];
grid
figure
plot(f_limited2, y2)
grid
.
2 Comments
Star Strider
on 5 Nov 2024 at 3:11
My initial inclinatiion was to create a FIR filter to filter the signal in the time domain, however while the firls function gave a good accounting of it in the passband, I was not certain how to define the filter above 25 Hz, and I am still not certain of that, so I defaulted to unity gain. In the end, I went with filtering the signal in the frequency domaiin, although that is not ideal.
See if this does what you want —
A1 = readmatrix('Gilroy_No1.txt', 'HeaderLines',4)
data5 = A1(:,5);
Fs = 1/0.005; % Zaman adımı
t = linspace(0, size(A1,1)-1, size(A1,1))/Fs;
nnz(ismissing(data5))
data5 = fillmissing(data5,'linear');
figure
plot(t, data5)
grid
xlabel('t')
ylabel('Amplitude')
title('Original Signal')
L = numel(data5);
nfft = 2^nextpow2(L)
FTs = fft(data5 .* hann(L), nfft); % Using A Power-Of-2 value For ‘nfft’ Makees ‘fft’ Moree Efficient
FTss = fftshift(FTs);
Fv = linspace(-Fs/2, Fs/2, numel(FTs));
figure
plot(Fv, abs(FTss))
grid
Lidx = (Fv >= -25) & (Fv <= 25);
NF = nnz(Lidx)
% f_limited = 0:0.5:25;
f_limited = linspace(0, 25, fix(NF/2));
Fs
h = 3.05; % Kalınlık (m)
Vs = 320; % Vs30 (m/s)
k = h / Vs;
% y = zeros(1, Fs/2/max(f_limited)*numel(f_limited))
y = ones(size(Fv));
yf = 1 ./ abs(cos(k * 2 * pi * f_limited)); % Amplifikasyon Fonksiyonu
yf = [flip(yf) yf]; % Create Symmetrical Filter
y(Lidx) = yf;
figure
plot(Fv, y)
grid
xlabel('Frequency')
ylabel('Filter Magnitude')
title('Filter Function (Frequency Domain)')
FTss_filtered = FTss .* y(:); % Filter Signal In Frequency Domain
figure
plot(Fv, abs(FTss_filtered))
grid
xlabel('Frequency')
ylabel('Magnitude')
title('Fourier Amplitude Of The Filtered Signal')
FvLv = Fv >= 0;
figure
plot(Fv(FvLv), abs(FTss_filtered(FvLv)))
grid
xlabel('Frequency')
ylabel('Magnitude')
title('Fourier Amplitude Of The Filtered Signal (One-Sided)')
data5_filtered = ifft(ifftshift(FTss_filtered)); % Inveerse Fouriee Transform Of Filtered Signal
data5_filtered = data5_filtered(1:numel(t)); % Remove Zerro-Padding
[minimag,maximag] = bounds(imag(data5_filtered))
figure
plot(t, data5_filtered(1:numel(t)))
grid
xlabel('t')
ylabel('Amplitude')
title('Filtered Signal')
figure
plot(t, data5, DisplayName='Original')
hold on
plot(t, data5_filtered(1:numel(t)), DisplayName='Filtered')
hold off
grid
xlabel('t')
ylabel('Amplitude')
title('Original & Filtered Signals')
legend('Location','best')
Ideally, the imaginary part of the inverted siignal should be zero. The reason that it is not is that the filter may not be perfectly symmetrical.
.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!