Interpolate and plot a surface in a rotated coordinated system

6 views (last 30 days)
I have a set of 3D measurement datapoints. I have already scatter plotted this data in coord system XYZ, and fit a plane through it.
Now, I want to interpolate and plot a surface through the datapoints, but do so in the new rotated coordinate system X'Y'Z' of the fit plane (which is roughly z = y - constant for my dataset).
My code below shows my attempt at using meshgrid -> griddata -> surf. The problem is most noticeable on the biggest outlier datapoints. The bumps in the interpolated surface aren't normal to the plane since griddata treats z = f(x,y). In other words, a want the residuals of my surface fit to be normal to the plan, not be vertical lines.
I suspect the answer will be to use grid data to fit a hypersurface but I have not had success with this either, not sure how to handle z and v separately. [vq = griddata(x,y,z,v,xq,yq,zq)]
clear; clc; close all;
load('measurement_data.mat');
fig1 = figure(1); hold on; grid on;
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
% fit a plane through the data and plot
[n,~,p] = affine_fit([x y z]); % Version 1.0.0.0 (894 Bytes) by Fangdi Sun, MATLAB File Exchange
[xw,yw] = meshgrid(linspace(min(x),max(x),2),linspace(min(y),max(y),2));
zw = -n(1)/n(3)*xw - n(2)/n(3)*yw + dot(n,p)/n(3);
surf(xw,yw,zw,'facecolor',[0.7 0 0],'facealpha',0.5);
% interpolate
[xq,yq] = meshgrid(linspace(min(x), max(x), 100), linspace(min(y), max(y), 100));
zq = griddata(x,y,z,xq,yq,'v4');
surf(xq,yq,zq,'FaceColor',[1 0 0],'FaceAlpha',0.3,'EdgeColor','none');
axis equal; axis manual;

Accepted Answer

Bruno Luong
Bruno Luong on 8 Oct 2024
Edited: Bruno Luong on 9 Oct 2024
Try this and see if it's OK for you
load('measurement_data.mat');
% fit a plane through the data and plot
xyz = [x y z];
[n,p] = normalfit(xyz); % function defined bellow
% Plane frame
V = eye(3);
V = V(:,[3 1 2]);
V(:,1) = n;
[V,~] = qr(V);
if det(V) < 0
V(:,1) = -V(:,1);
end
V = V(:,[2 3 1]);
% Coordinares in the plane "frame"
xyzR = (xyz-p)*V;
xR = xyzR(:,1);
yR = xyzR(:,2);
zR = xyzR(:,3);
% create grid points
[minxR,maxxR] = bounds(xR);
[minyR,maxyR] = bounds(yR);
nx = 60;
ny = 60;
[xqgR,yqgR,zqgR] = meshgrid(linspace(minxR,maxxR,nx),linspace(minyR,maxyR,ny),mean(zR,'all'));
% Rotate back to origin coordinates
xyzgR = [xqgR(:) yqgR(:) zqgR(:)];
xyzg = p+xyzgR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zg = reshape(xyzg(:,3),size(zqgR));
% Extract the 4 corners and wrap to close the rectangle
xrec = g2corner(xg);
yrec = g2corner(yg);
zrec = g2corner(zg);
% interpolate in rotates plane frame
zqR = griddata(xR,yR,zR,xqgR,yqgR,'v4');
Warning: Duplicate x-y data points detected: using average values for duplicate points.
xyzR = [xqgR(:) yqgR(:) zqR(:)];
% Rotate back the interpolation to origin coordinates
xyzg = p+xyzR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zq = reshape(xyzg(:,3),size(zqgR));
%%
fig1 = figure(); hold on; grid on;
% data
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
% rectangle box
plot3(xrec, yrec, zrec, "k", 'LineWidth', 2);
% interpolation surface
surf(xg,yg,zq,'FaceColor',[1 0 0],'FaceAlpha',0.3) %,'EdgeColor','none');
axis equal;
view(50,10)
function xR = g2corner(xqgR)
xR = [xqgR(1,1) xqgR(1,end) xqgR(end,end) xqgR(end,1) xqgR(1,1)];
end
function [n,p] = normalfit(xyz)
p = mean(xyz,1);
[~,~,V] = svd(xyz-p);
n = V(:,3);
end
  2 Comments
Bruno Luong
Bruno Luong on 9 Oct 2024
Edited: Bruno Luong on 9 Oct 2024
Using ransac to make the robust fit.
load('measurement_data.mat');
% fit a plane through the data and plot
xyz = [x y z];
[model, inlier] = ransac([x y z], @fitFcn, @distFcn, 3, 16);
n = model.n;
p = model.p;
outlier = ~inlier;
fprintf('number of outlier = %d/%d\n', nnz(outlier), numel(outlier))
number of outlier = 25/301
% Plane frame
V = eye(3);
V = V(:,[3 1 2]);
V(:,1) = n;
[V,~] = qr(V);
if det(V) < 0
V(:,1) = -V(:,1);
end
V = V(:,[2 3 1]);
% Coordinares in the plane "frame"
xyzR = (xyz-p)*V;
xR = xyzR(:,1);
yR = xyzR(:,2);
zR = xyzR(:,3);
% create grid points
[minxR,maxxR] = bounds(xR);
[minyR,maxyR] = bounds(yR);
nx = 60;
ny = 60;
[xqgR,yqgR,zqgR] = meshgrid(linspace(minxR,maxxR,nx),linspace(minyR,maxyR,ny),mean(zR,'all'));
% Rotate back to origin coordinates
xyzgR = [xqgR(:) yqgR(:) zqgR(:)];
xyzg = p+xyzgR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zg = reshape(xyzg(:,3),size(zqgR));
% Extract the 4 corners and wrap to close the rectangle
xrec = g2corner(xg);
yrec = g2corner(yg);
zrec = g2corner(zg);
% interpolate in rotates plane frame
zqR = griddata(xR,yR,zR,xqgR,yqgR,'v4');
Warning: Duplicate x-y data points detected: using average values for duplicate points.
xyzR = [xqgR(:) yqgR(:) zqR(:)];
% Rotate back the interpolation to origin coordinates
xyzg = p+xyzR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zq = reshape(xyzg(:,3),size(zqgR));
%%
fig1 = figure(); hold on; grid on;
% data
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
% rectangle box
plot3(xrec, yrec, zrec, "k", 'LineWidth', 2);
% interpolation surface
surf(xg,yg,zq,'FaceColor',[1 0 0],'FaceAlpha',0.3) %,'EdgeColor','none');
axis equal;
view(50,10)
function xR = g2corner(xqgR)
xR = [xqgR(1,1) xqgR(1,end) xqgR(end,end) xqgR(end,1) xqgR(1,1)];
end
function [n,p] = normalfit(xyz)
p = mean(xyz,1);
[~,~,V] = svd(xyz-p);
n = V(:,3);
end
function model = fitFcn(xyz)
[n,p] = normalfit(xyz);
model = struct('n',n,'p',p);
end
function distances = distFcn(model, xyz)
n = model.n;
p = model.p;
distances = abs((xyz-p) * n);
end
Benjamin
Benjamin on 9 Oct 2024
Accepted this answer becase the surface fit is aligned in the coordinate system, and utilizes v4 method which is C2 continuous

Sign in to comment.

More Answers (1)

Matt J
Matt J on 7 Oct 2024
Edited: Matt J on 8 Oct 2024
I'm not familiar with the FEX submission you used, but I can show how I would do it with this one,
load('measurement_data.mat');
fig1 = figure(1); hold on; grid on;
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
%Fit a plane
XYZ0=[x,y,z]';
pFit=planarFit(XYZ0);
%Project onto 2D
R = pFit.R(:,[2,3,1]);
b0 = (pFit.normal*pFit.distance).';
UVW=num2cell(R'*(XYZ0-b0),2);
[u,v,w]=deal(UVW{:}); %rotated coordinates
%Interpolate in 2D
F=scatteredInterpolant(u(:),v(:),w(:));
[uq,vq]=ndgrid( linspace(min(u),max(u)) , linspace(min(v),max(v)) );
wq=F( uq , vq );
%Map back to 3D
XYZ=num2cell(R*[uq(:),vq(:),wq(:)]'+b0,2);
[xq,yq,zq]=deal(XYZ{:});
%Plot
f=@(q) reshape(q,size(wq));
surf(f(xq),f(yq),f(zq),'FaceColor',[1 0 0],'FaceAlpha',0.3,'EdgeColor','none');
axis equal; axis manual;
  4 Comments
Benjamin
Benjamin on 7 Oct 2024
wq is 100x100 double, whereas uq and vq are both 1x100 doubles.
What should I do to make wq a row vector also?
This is where wq is created
wq=F({ uq , vq });
Matt J
Matt J on 8 Oct 2024
I have modified my original answer to show the correct code and results.

Sign in to comment.

Categories

Find more on Interpolation in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!