Newton Forward difference method
17 views (last 30 days)
Show older comments
% Confirmed case Sample data points (x, y)
data = [ 1, 88; 2, 49; 3, 47; 4, 8; 5, 34; 6, 762; 7, 98; 8, 40];
% Extract x and y values
x = data(:, 1);
y = data(:, 2);
n = length(x);
% Calculate forward differences
forward_diff = zeros(n, n);
forward_diff(:, 1) = y;
for j = 2:n
for i = 1:n-j+1
forward_diff(i, j) = forward_diff(i+1, j-1) - forward_diff(i, j-1);
end
end
% Construct the Newton Forward Difference polynomial
syms X;
P = y(1);
for j = 1:n-1
term = forward_diff(1, j);
for i = 1:j
term = term * (X - x(i));
end
P = P + term / factorial(j);
end
disp('Newton Forward Difference Polynomial:');
disp(simplify(P));
Result Newton Forward Difference Polynomial: - (725*X^7)/1008 + (1651*X^6)/80 - (173233*X^5)/720 + (70651*X^4)/48 - (91321*X^3)/18 + (146407*X^2)/15 - (1996741*X)/210 + 3658
The problem now is that when I substitute each value of x, I don't get the corresponding value of y as stated in the table. I need help on how to get the correct polynomial equation.
0 Comments
Accepted Answer
Torsten
on 15 Sep 2024
Edited: Torsten
on 15 Sep 2024
Three coding errors:
% Confirmed case Sample data points (x, y)
data = [ 1, 88; 2, 49; 3, 47; 4, 8; 5, 34; 6, 762; 7, 98; 8, 40];
% Extract x and y values
x = data(:, 1);
y = data(:, 2);
n = length(x);
% Calculate forward differences
forward_diff = zeros(n, n);
forward_diff(:, 1) = y;
for j = 2:n
for i = 1:n-j+1
%forward_diff(i, j) = (forward_diff(i+1, j-1) - forward_diff(i, j-1))
forward_diff(i, j) = (forward_diff(i+1, j-1) - forward_diff(i, j-1)) / (x(i+j-1) - x(i));
end
end
% Construct the Newton Forward Difference polynomial
syms X;
P = y(1);
for j = 1:n-1
%term = forward_diff(1, j);
term = forward_diff(1, j+1);
for i = 1:j
term = term * (X - x(i));
end
%P = P + term / factorial(j);
P = P + term;
end
disp('Newton Forward Difference Polynomial:');
disp(simplify(P));
double(subs(P,X,x))
For all data series with deltax = 1 (as the one above), there is one error in your code. But note that this is a special case and the above code holds for arbitrary deltax.
% Confirmed case Sample data points (x, y)
data = [ 1, 88; 2, 49; 3, 47; 4, 8; 5, 34; 6, 762; 7, 98; 8, 40];
% Extract x and y values
x = data(:, 1);
y = data(:, 2);
n = length(x);
% Calculate forward differences
forward_diff = zeros(n, n);
forward_diff(:, 1) = y;
for j = 2:n
for i = 1:n-j+1
forward_diff(i, j) = forward_diff(i+1, j-1) - forward_diff(i, j-1);
end
end
% Construct the Newton Forward Difference polynomial
syms X;
P = y(1);
for j = 1:n-1
%term = forward_diff(1, j);
term = forward_diff(1, j+1);
for i = 1:j
term = term * (X - x(i));
end
P = P + term / factorial(j);
end
disp('Newton Forward Difference Polynomial:');
disp(simplify(P));
double(subs(P,X,x))
0 Comments
More Answers (0)
See Also
Categories
Find more on Number Theory in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!