% first, I construct a table similar to yours
N = 152709;
MeasID = cellstr(char(64+randi(26,N,4)));
Time = datetime(randi(30,N,6));
C = num2cell(rand(N,12),1);
tData = table(MeasID,Time,C{:})
tData = 152709x14 table
     MeasID             Time              Var3       Var4        Var5        Var6        Var7        Var8       Var9       Var10      Var11       Var12        Var13       Var14  
    ________    ____________________    ________    _______    _________    _______    ________    ________    _______    _______    _______    _________    _________    ________
    {'BAIX'}    14-Oct-0016 15:04:08     0.74662    0.66584      0.97243    0.87197     0.16557     0.47469     0.2506    0.60395    0.86371      0.39017      0.17175     0.61027
    {'KQVE'}    11-Mar-0013 23:01:14     0.89935    0.57533      0.97518    0.15691     0.81941    0.024631    0.28559    0.67214     0.9678      0.10555      0.23931     0.75911
    {'RTDP'}    28-Jun-0004 01:03:30     0.68013    0.83434      0.19336    0.39673     0.24662     0.66457    0.03651    0.77372    0.96092       0.9078       0.1652     0.45785
    {'EFAT'}    20-Mar-0014 02:26:13    0.053861     0.5456      0.27471    0.38658     0.71067     0.52239    0.88472    0.69064     0.4962      0.68826      0.27238     0.66459
    {'GYEY'}    24-Sep-0017 04:13:15     0.07359    0.74494      0.63175    0.76147     0.32292    0.081403    0.45976    0.33457    0.97788      0.36092       0.6186     0.93396
    {'BTAL'}    11-Nov-0023 16:26:29     0.87689    0.78009     0.036542    0.78547     0.63962     0.87256    0.94112    0.98786     0.1229      0.80758      0.72292     0.15229
    {'OBIW'}    17-Sep-0018 17:20:20     0.65785    0.75491       0.4657    0.62428     0.48063     0.82777     0.5978    0.52455    0.37039    0.0096658      0.88045     0.43789
    {'YQDL'}    25-Apr-0006 09:15:15     0.97658    0.85495     0.079595     0.2679     0.61404     0.23152    0.61481    0.17822    0.81922      0.65674      0.81724     0.11674
    {'MHVL'}    19-Jul-0022 23:13:20    0.032466    0.38461      0.20308    0.89468     0.10013     0.49899    0.91968    0.45019    0.32341      0.30873      0.15687      0.7115
    {'ARYA'}    01-Mar-0023 19:11:10     0.17789    0.91077      0.30519    0.52604    0.095028     0.36208     0.5468    0.75843    0.33732      0.37849      0.62022     0.16637
    {'IOLX'}    27-Feb-0030 15:12:06     0.41864    0.95644      0.13891    0.90773    0.014836     0.90455    0.65606    0.63802    0.17448       0.6043      0.63695     0.85284
    {'KHJC'}    27-Dec-0009 16:01:19     0.63461    0.27975      0.88259    0.85227     0.46034     0.96396    0.32063    0.88355    0.39404     0.042222      0.70572     0.91728
    {'TTTW'}    01-Apr-0024 19:20:08     0.96205    0.88056    0.0078747    0.58999     0.70797     0.12374    0.30285    0.22808    0.73668      0.76896    0.0025572    0.093245
    {'COOO'}    05-Oct-0001 14:19:10     0.33551    0.87829      0.22246    0.64423     0.59508      0.9902    0.93756    0.99927    0.32911       0.1336      0.59499     0.74522
    {'SFNO'}    04-Jul-0022 21:03:26     0.29299    0.54507      0.78344    0.95124     0.29257     0.72571    0.13398    0.41114    0.74129       0.9658      0.98474     0.31675
    {'ORFM'}    06-Jun-0009 22:02:08     0.51373    0.65547     0.099982    0.92044      0.6864     0.11025    0.18933    0.47621    0.93311      0.76635      0.42722    0.073502
% second, use grpstats to calculate the mean of each group, with grouping
% done according to indices, over all the numeric and datetime table variables
indices = repelem(1:ceil(height(tData)/10), 10, 1);
indices = indices(1:height(tData));
tData.group_idx = indices(:);
vars = tData.Properties.VariableNames;
vars(ismember(vars,{'MeasID','group_idx'})) = [];
tDataReduced = grpstats(tData,'group_idx','mean','DataVars',vars)
tDataReduced = 15271x15 table
          group_idx    GroupCount         mean_Time          mean_Var3    mean_Var4    mean_Var5    mean_Var6    mean_Var7    mean_Var8    mean_Var9    mean_Var10    mean_Var11    mean_Var12    mean_Var13    mean_Var14
          _________    __________    ____________________    _________    _________    _________    _________    _________    _________    _________    __________    __________    __________    __________    __________
    1         1            10        07-Feb-0016 05:55:29     0.51752      0.70514      0.41375       0.5672      0.41946      0.45606      0.55374      0.59743       0.62398       0.46139       0.46649       0.50105  
    2         2            10        13-Feb-0015 18:09:59     0.63774      0.70607       0.3648      0.77554      0.34877      0.55199      0.49512      0.64596       0.47208       0.52363       0.54743       0.42753  
    3         3            10        11-May-0013 06:47:28      0.4609      0.52306      0.40594       0.5143      0.51193      0.36895      0.65375      0.51091       0.44099       0.43514        0.5454       0.41105  
    4         4            10        05-Oct-0016 04:06:59     0.50106      0.48854      0.38952       0.5806      0.55353      0.52183      0.46437        0.449       0.35994       0.48053       0.50099       0.56911  
    5         5            10        02-Jul-0014 12:40:20     0.42546      0.47703      0.60594      0.48473      0.49456      0.52169      0.45005      0.50737       0.59695       0.49354       0.53942       0.51315  
    6         6            10        24-Jun-0015 05:20:08     0.54365      0.42454      0.50526       0.3918      0.54657      0.34156      0.50776      0.64644       0.41142       0.52169       0.37793       0.54506  
    7         7            10        26-May-0018 12:10:02       0.223      0.62658      0.57745      0.43137      0.64486      0.59084      0.27219      0.47831        0.4504       0.52788        0.4444       0.61095  
    8         8            10        26-Sep-0015 06:05:38     0.36107      0.45844      0.43259      0.44789      0.53122      0.51577      0.43466      0.44741       0.30144       0.48877       0.44208       0.53721  
    9         9            10        20-Jul-0014 02:30:31     0.52693      0.52128      0.62287      0.56108      0.55619      0.40734      0.56754      0.45903       0.51274       0.53433       0.40313       0.53245  
    10       10            10        11-Apr-0013 12:28:32     0.55496      0.37775      0.49104      0.64185        0.583      0.50644      0.59117      0.57325       0.58854       0.48762       0.53708       0.50528  
    11       11            10        14-Dec-0015 20:58:18     0.47345      0.56358      0.50469      0.42712      0.58192      0.44643      0.51888      0.55781       0.35132       0.53893       0.49807       0.61024  
    12       12            10        30-Oct-0018 05:14:32     0.67559      0.48449      0.42596      0.46722      0.57329      0.58917      0.52009       0.4463       0.46092       0.36197       0.61369       0.59372  
    13       13            10        16-Oct-0018 01:22:52      0.3809      0.47299      0.43709      0.60162      0.40392      0.67956       0.4347      0.37734       0.33699        0.4328       0.42047       0.29406  
    14       14            10        12-Apr-0019 05:11:28     0.44723      0.49497      0.48745      0.65644       0.5099      0.52495      0.58134      0.47569       0.41992       0.39552       0.56101       0.49381  
    15       15            10        18-Mar-0013 10:42:37     0.45406      0.57539      0.54544      0.45573       0.6396      0.59733      0.57942      0.46537       0.51966       0.34679       0.54309       0.41337  
    16       16            10        24-Mar-0022 02:02:55     0.48386      0.29842      0.38997      0.69434      0.35066      0.49995      0.55025      0.47631       0.65821       0.46389       0.43511       0.71093  

