Custom loss function by multipling the output network by the input
3 views (last 30 days)
Show older comments
The network I created takes a vector in input and gives me in output a vector of coefficients of shorter length than the input. Do I have to calculate the loss by multiplying these coefficients by the input vector and calculate the mse between this multiplication and the memory vectors not passed to the network how can I do? I’m using trainNetwork. Thanks
0 Comments
Answers (1)
Himanshu
on 21 Mar 2024
Hello Lup,
I understand that you are trying to implement a custom loss function for your neural network in MATLAB, where the loss is calculated by multiplying the output of the network by the input vector and then computing the mean squared error between this result and some memory vectors that were not passed to the network.
To implement a custom loss function, you need to create a function that calculates the loss according to your specific requirements. This function takes the predictions from the network, the memory vectors, and the original input vector as arguments. Inside this function, perform the multiplication of the network's output coefficients with the input vector, and then compute the MSE between this product and the memory vectors.
You can pass the custom loss function as a function handle into the "lossFcn" parameter in the "trainNetwork" function.
Please refer to the below documentation to learn more about the loss function in the "trainNetwork" function.
Please refer to the below documentation on how to define custom operations as MATLAB functions for Deep Learning Operations.
I hope this helps.
0 Comments
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!