I'm suppose to plot the conventional integral , but I'm getting wrong values
2 views (last 30 days)
Show older comments
ok
2 Comments
VBBV
on 11 Feb 2024
You need to specify the condition for the first 7 seconds given in your problem inside the loop as below
% Clear the workspace, close all figures, and clear command window
clc;
clear all;
close all;
% Given parameters
f1 = 3; % Amplitude of the forcing function
f2 = 0; % Second amplitude (set to 0)
T1 = 7; % Time period for first interval
T2 = 30; % Time period for second interval
T3 = 40; % Time period for third interval
zeta = 0.1; % Damping ratio
wn = 3; % Natural frequency
wd = wn * sqrt(1 - zeta^2); % Damped natural frequency
m = 1; % Mass
% Define symbolic variables
syms t tau;
% Define the forcing function F1(t)
F1 = (f1*t/ T1);
% Calculate damping coefficient
c1 = (1 / (m * wd));
A = 1;
% Define the impulse response function x1(tau)
x1 = A*(exp(-zeta * (t - tau))) * (sin(wd * (t - tau)));
x2 = exp(-zeta * (t - tau)) * (sin(wd * (t - tau)));
% Define expressions for each interval of x(t)
x_1 = c1 * int(x1, tau, 0, t);
x_2 = c1 * (int(x1, tau, 0, T1) + int(0, tau, T1, t));
x_3 = c1 * (int(x1, tau, 0, T1) + int(0, tau, T1, T2) + int(f2*x2, tau, T2, T3));
x_4 = c1 * (int(x1, tau, 0, T1) + int(0, tau, T1, T2) + int(f2*x2, tau, T2, T3) + int(0, tau, T3, t));
% Total expression for x(t)
X_total = x_1 + x_2+ x_3 + x_4;
% Define time vector
t_values = linspace(0, T3, 1000);
% Evaluate x(t) for each time point
x_values = zeros(size(t_values));
for i = 1:length(t_values)
if t_values(i) <= 7
x_values(i) = double(subs(F1, t, t_values(i))); % from the given conditions in your question
else
x_values(i) = double(subs(X_total, t, t_values(i)));
end
end
% Plot x(t)
plot(t_values, x_values, 'b', 'LineWidth', 2);
xlabel('Time (s)');
ylabel('Displacement (m)');
title('Displacement Response x(t)');
grid on;
Accepted Answer
Torsten
on 9 Feb 2024
Edited: Torsten
on 9 Feb 2024
syms t x(t)
zeta = 0.1;
omegan = 3;
f1 = 1;
f2 = 0;
T1 = 7;
T2 = 30;
T3 = 40;
D2x = diff(x,t,2);
Dx = diff(x,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f1*t/T1;
conds = [x(0)==0,Dx(0)==0];
x1 = dsolve(eqn,conds);
Dx1 = diff(x1,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T1)==subs(x1,t,T1),Dx(T1)==subs(Dx1,t,T1)];
x2 = dsolve(eqn,conds);
Dx2 = diff(x2,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f2;
conds = [x(T2)==subs(x2,t,T2),Dx(T2)==subs(Dx2,t,T2)];
x3 = dsolve(eqn,conds);
Dx3 = diff(x3,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T3)==subs(x3,t,T3),Dx(T3)==subs(Dx3,t,T3)];
x4 = dsolve(eqn,conds);
x = piecewise(t>= 0 & t < T1,x1,t >=T1 & t < T2, x2, t>=T2 & t < T3,x3,t>=T3,x4);
fplot(x,[0 50])
5 Comments
Torsten
on 11 Feb 2024
Edited: Torsten
on 11 Feb 2024
You mean if the solution from 0 to 7 s in my code is correct ?
If the equation you want to solve for the damped spring/mass system is
x''+2*zeta*omega*x'+omega^2*x = f
I think it's correct.
But let's check:
syms t x(t)
zeta = 0.1;
omegan = 3;
f1 = 1;
f2 = 0;
T1 = 7;
T2 = 30;
T3 = 40;
D2x = diff(x,t,2);
Dx = diff(x,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f1*t/T1;
conds = [x(0)==0,Dx(0)==0];
x1 = dsolve(eqn,conds);
Dx1 = diff(x1,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T1)==subs(x1,t,T1),Dx(T1)==subs(Dx1,t,T1)];
x2 = dsolve(eqn,conds);
Dx2 = diff(x2,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==f2;
conds = [x(T2)==subs(x2,t,T2),Dx(T2)==subs(Dx2,t,T2)];
x3 = dsolve(eqn,conds);
Dx3 = diff(x3,t);
eqn = D2x + 2*zeta*omegan*Dx+omegan^2*x==0;
conds = [x(T3)==subs(x3,t,T3),Dx(T3)==subs(Dx3,t,T3)];
x4 = dsolve(eqn,conds);
x = piecewise(t>= 0 & t < T1,x1,t >=T1 & t < T2, x2, t>=T2 & t < T3,x3,t>=T3,x4);
fplot(x,[0 50])
fun = @(t,x)[x(2);-2*zeta*omegan*x(2)-omegan^2*x(1)+f1*t/T1];
[T,Y] = ode45(fun,[0 T1],[0 0]);
hold on
plot(T,Y(:,1))
grid on
More Answers (0)
See Also
Categories
Find more on Function Creation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!