Using parfor to evaluate integrations
2 views (last 30 days)
Show older comments
Luqman Saleem
on 2 Feb 2024
Commented: Mike Croucher
on 5 Feb 2024
Probably a stupid question.
I want to integrate a function f(x,y). Can I use parfor() as shown below to compute the sum? I am confused because I consider that each loop over one "ix" value in the following parfor() is run independently from other "ix" values, which means that I must obtain a different "sum_f" for each "ix" value. Right?
clear; clc;
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
f = @(x,y) x^2+y^2;
sum_f = 0;
parfor ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I = sum(sum_f(:))
2 Comments
Dyuman Joshi
on 2 Feb 2024
Any particular reason why you are using a double for loop, instead of vectorizing the function handle and the sum?
Accepted Answer
Dyuman Joshi
on 2 Feb 2024
Moved: Hans Scharler
on 2 Feb 2024
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
%vectorizing the function handle
f = @(x,y) x.^2+y.^2;
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I1 = sum(sum_f(:))
toc
tic
I2 = sum(f(xs,ys.').*dx.*dy, 'all')
toc
%Using tolerance to compare floating point numbers
abs(I1-I2)<1e-10
2 Comments
Mike Croucher
on 5 Feb 2024
Ahhh loops vs vectors....my old friend. We meet again.
I'm going to let you in on a secret......sometimes loops are faster!
- Original loop with a function call: 0.218 seconds
- Optimised loop with function call removed: 0.025 seconds
- vectorised loop: 0.0275 seconds
So here, my loop version is slightly faster than the vectorised version. What you see might be dependent on machine, problem size and MATLAB version
Observe:
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
%vectorizing the function handle
f = @(x,y) x.^2+y.^2;
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I1 = sum(sum_f(:))
toc
disp('Inline the function call in the loop')
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + (x.^2+y.^2)*dx*dy;
end
end
I1 = sum(sum_f(:))
toc
disp('vectorised version')
tic
I2 = sum(f(xs,ys.').*dx.*dy, 'all')
toc
More Answers (0)
See Also
Categories
Find more on Data Type Identification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!