Improper integral at 0
2 views (last 30 days)
Show older comments
lambda = 0.07;
mu_1 = 0.05;
mu_2 = 0.12;
W0 = 20000;
R1 = 3000;
R2 = 5000;
r = 0.05;
f = @(x) ((R1-r*W0)/x)^((lambda + mu_1) / r) * (R2 - R1 + x)^(mu_2/r-1); % Example function
a = 0; % Lower limit of integration
b = R1; % Upper limit of integration
tol = 1e-6; % Tolerance (optional)
result = quadadapt(f, a, b, tol);
disp(result);
function q = quadadapt(f, a, b, tol, varargin)
% Checks if the tolerance is provided, otherwise sets a default tolerance
if nargin < 4 || isempty(tol)
tol = 1.e-6;
end
% Initial function evaluations at the endpoints and the midpoint
c = (a + b) / 2;
fa = feval(f, a, varargin{:});
fc = feval(f, c, varargin{:});
fb = feval(f, b, varargin{:});
% Call the recursive adaptive quadrature function
q = quadstep(f, a, b, tol, fa, fc, fb, varargin{:});
end
function q = quadstep(f, a, b, tol, fa, fc, fb, varargin)
% Calculate the midpoint and the step size
h = b - a;
c = (a + b) / 2;
% Function evaluations at the quarter-points
fd = feval(f, (a + c) / 2, varargin{:});
fe = feval(f, (c + b) / 2, varargin{:});
% Simple quadrature and more refined quadrature
q1 = h / 6 * (fa + 4 * fc + fb);
q2 = h / 12 * (fa + 4 * fd + 2 * fc + 4 * fe + fb);
% Check if the refinement is within the tolerance
if abs(q2 - q1) <= tol
q = q2 + (q2 - q1) / 15;
else
% Recursive calls for each half of the interval
qa = quadstep(f, a, c, tol, fa, fd, fc, varargin{:});
qb = quadstep(f, c, b, tol, fc, fe, fb, varargin{:});
q = qa + qb;
end
end
I am trying to approximate improper integral ((R1-r*W0)/x)^((lambda + mu_1) / r) * (R2 - R1 + x)^(mu_2/r-1) from o to R1.
Can you suggest method or or code example. It seems quadadapt doesn't work for improper integral
0 Comments
Answers (1)
Torsten
on 1 Feb 2024
Edited: Torsten
on 1 Feb 2024
Your integrand behaves like x^(-12/5) at x=0. That means that the value of the integral is + Inf.
lambda = 0.07;
mu_1 = 0.05;
mu_2 = 0.12;
W0 = 20000;
R1 = 3000;
R2 = 5000;
r = 0.05;
syms x
f = ((R1-r*W0)/x)^((lambda + mu_1) / r) * (R2 - R1 + x)^(mu_2/r-1) % Example function
7 Comments
John D'Errico
on 2 Feb 2024
Why are you using your own code? For example, integral will survive when it is possible. NEVER write your own code to solve a problem when well written code exists, written by professionals. For example...
f = @(x) 1./sqrt(x);
integral(f,0,1)
As you can see, integral has no problem, as long as the integral exists.
However, your problem does not have a solution, no matter what you do. And reducing the interval on an unbounded integral is not meaningful. It will generate a non-zero result that is complete garbage.
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!