# How to increase speed of a multi-vector calculation

3 views (last 30 days)
moh mor on 18 Dec 2023
Commented: moh mor on 18 Dec 2023
Hello,
I have implemented a loop like this:
for coorC = 1:numel(y1f),
AF_Nunir(:,coorC) = AF_surff( x1f.', y1f.', x1f(coorC), y1f(coorC), (Xr.')*0.015, (Yr.')*0.015 ,K);
end
and:
function z = AF_surff(u , v, u0 , v0 , X, Y , K )
distance = (sqrt((X-u0).^2 + (Y-v0).^2 + 0.4^2) - sqrt((X - u).^2 + (Y - v).^2 + 0.4^2));
AF_out1 = sum(exp(1j*(K.').*(distance(:).')),1);
AF_out2 = sum(reshape(AF_out1,[numel(X),numel(u)]),1);
z = AF_out2;
end
where "K", "Xr", "Yr", "x1f", and "y1f" are vector. I could implement this code using multiple nested "for" loop. But, I'd rather using vector computation in order to increase running speed. Above block must be rUn multiple times in our code, So it is crucial to implement this blcok efficiently. This takes 145s in a "core i9 12900K" CPU. What is your advice to perform this manipulations efficiently? I've heard about parallel computing. Does it effectively play a crucial role for solving this kind of problem?
Any help would be appreciated.
Thank you

Rik on 18 Dec 2023
The iterations are not interdependent, so you should be able to use a parfor loop instead.
You could consider performing those conjugations (the .'), since those take up time every iteration.
Another speedup would be to replace distance(:).' by a call to reshape.
moh mor on 18 Dec 2023

### Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

R2018b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!